• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Robotic assistants may adapt to humans in the factory

June 13, 2012 By EurekAlert

CAMBRIDGE, Mass. — In today’s manufacturing plants, the division of labor between humans and robots is quite clear: Large, automated robots are typically cordoned off in metal cages, manipulating heavy machinery and performing repetitive tasks, while humans work in less hazardous areas on jobs requiring finer detail.

But according to Julie Shah, the Boeing Career Development Assistant Professor of Aeronautics and Astronautics at MIT, the factory floor of the future may host humans and robots working side by side, each helping the other in common tasks. Shah envisions robotic assistants performing tasks that would otherwise hinder a human’s efficiency, particularly in airplane manufacturing.

“If the robot can provide tools and materials so the person doesn’t have to walk over to pick up parts and walk back to the plane, you can significantly reduce the idle time of the person,” says Shah, who leads the Interactive Robotics Group in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). “It’s really hard to make robots do careful refinishing tasks that people do really well. But providing robotic assistants to do the non-value-added work can actually increase the productivity of the overall factory.”

A robot working in isolation has to simply follow a set of preprogrammed instructions to perform a repetitive task. But working with humans is a different matter: For example, each mechanic working at the same station at an aircraft assembly plant may prefer to work differently — and Shah says a robotic assistant would have to effortlessly adapt to an individual’s particular style to be of any practical use.

Now Shah and her colleagues at MIT have devised an algorithm that enables a robot to quickly learn an individual’s preference for a certain task, and adapt accordingly to help complete the task. The group is using the algorithm in simulations to train robots and humans to work together, and will present its findings at the Robotics: Science and Systems Conference in Sydney in July.

“It’s an interesting machine-learning human-factors problem,” Shah says. “Using this algorithm, we can significantly improve the robot’s understanding of what the person’s next likely actions are.”

Taking wing

As a test case, Shah’s team looked at spar assembly, a process of building the main structural element of an aircraft’s wing. In the typical manufacturing process, two pieces of the wing are aligned. Once in place, a mechanic applies sealant to predrilled holes, hammers bolts into the holes to secure the two pieces, then wipes away excess sealant. The entire process can be highly individualized: For example, one mechanic may choose to apply sealant to every hole before hammering in bolts, while another may like to completely finish one hole before moving on to the next. The only constraint is the sealant, which dries within three minutes.

The researchers say robots such as FRIDA, designed by Swiss robotics company ABB, may be programmed to help in the spar-assembly process. FRIDA is a flexible robot with two arms capable of a wide range of motion that Shah says can be manipulated to either fasten bolts or paint sealant into holes, depending on a human’s preferences.

To enable such a robot to anticipate a human’s actions, the group first developed a computational model in the form of a decision tree. Each branch along the tree represents a choice that a mechanic may make — for example, continue to hammer a bolt after applying sealant, or apply sealant to the next hole?

“If the robot places the bolt, how sure is it that the person will then hammer the bolt, or just wait for the robot to place the next bolt?” Shah says. “There are many branches.”

Using the model, the group performed human experiments, training a laboratory robot to observe an individual’s chain of preferences. Once the robot learned a person’s preferred order of tasks, it then quickly adapted, either applying sealant or fastening a bolt according to a person’s particular style of work.

Working side by side

Shah says in a real-life manufacturing setting, she envisions robots and humans undergoing an initial training session off the factory floor. Once the robot learns a person’s work habits, its factory counterpart can be programmed to recognize that same person, and initialize the appropriate task plan. Shah adds that many workers in existing plants wear radio-frequency identification (RFID) tags — a potential way for robots to identify individuals.

Shah says robotic assistants may also be programmed to help in medical settings. For instance, a robot may be trained to monitor lengthy procedures in an operating room and anticipate a surgeon’s needs, handing over scalpels and gauze, depending on a doctor’s preference. While such a scenario may be years away, robots and humans may eventually work side by side, with the right algorithms.

“We have hardware, sensing, and can do manipulation and vision, but unless the robot really develops an almost seamless understanding of how it can help the person, the person’s just going to get frustrated and say, ‘Never mind, I’ll just go pick up the piece myself,'” Shah says.

Article Source: https://www.eurekalert.org/pub_releases/2012-06/miot-ram061212.php

You Might Also Like

Filed Under: Automotive/Transportation, Fiber Optics, Robotics/Drones

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

zonal architecture

Addressing zonal architecture challenges in the automotive industry

zonal architecture

Addressing zonal architecture challenges in the automotive industry

A2L refrigerants drive thermal drift concerns in HVAC systems

Why outdoor charging demands specialized battery connectors

How Li-ion batteries are powering the shift in off-highway equipment

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Finding past posts on edaboard?
  • I think i have devised a new type of "super_transformer" for the Electricity grid?
  • Industrial Relay Board Design for Motorcycle Use
  • sequence detector FSM design
  • Need suggestions in task NI6363 retrigger (analog trigger)

RSS Current Electro-Tech-Online.com Discussions

  • Sump pit water alarm - Kicad 9
  • Pic18f25q10 osccon1 settings swordfish basic
  • Anyone jumped from Easyeda std to Easyeda pro?
  • turbo jet fan - feedback appreciated.
  • More fun with ws2812 this time XC8 and CLC
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy