• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Solar Powered Everything!

March 25, 2013 By Chris Rendall, Mechanical Engineer, PCDworks

I’ve heard for years that “soon we’ll have solar panels on everything.” To be honest, I’ve never paid much attention to the hype because these magical solar panels that can fit on and inside everything never seemed to materialize commercially, or if they did they were always way too expensive for the everyday consumer, or maybe just for me. But researchers at Stanford University seem to have made a real breakthrough in solar technology: thin, sticky, flexible solar panels that can stick to just about any surface or object imaginable.

Solar panels are nothing new. The ability to produce electricity directly from the sun’s rays via the photovoltaic effect has been around for over half a century. Since their invention, strides have been made in cost reduction and efficiency improvement, but certain factors continue to hold them back from being used by the public in everyday usage. Besides cost, which unfortunately is still too high for most people to see a return on investment in a reasonable amount of time, the other big obstacle is rigidity. Rigidity is fine for things like a solar power plant or a space station, but it doesn’t work for everything.

iss.jpg

Most commercially available solar panels are still manufactured the same way they have been for decades. To put it overly simply and quite boringly, crystalline silicon discs are doped with boron and phosphorous and bonded to metal conductors to create a solar cell. The manufacturing process usually involves creating the solar cells on a rigid surface, such as glass, to have the highest quality and electrical efficiency. In order to get away from the limitations of rigid solar panels, flexible solar panels were developed in the late 1970’s. Remember those solar powered calculators that started turning up everywhere in the late 1970’s and early 1980’s? Of course you don’t, you’re too young! But seriously, those had flexible solar panels in them.

However, there is a big drawback when moving from rigid to flexible solar panels: a significant loss of efficiency. Assistant Professor of Mechanical Engineering at Stanford University, Xiaolin Zheng, explained this loss of efficiency as being caused by the flexible substrate, or backing material for the cells, which can’t tolerate the high temperatures and chemicals used to manufacture rigid solar panels. This forces flexible solar panel manufacturers to use different methods which decrease the efficiency of the solar cells or to use more expensive substrate materials to get similar efficiency to rigid panels.

To get around this, Zheng, who was the principal author of the original paper on this new technology published in Scientific Reports, has created a method for solar cell manufacturing that retains the best of both worlds. The new method involves fabricating the solar cell on a rigid substrate and then separating the solar cell “film” from the rigid backing with a layer of nickel and a water bath. The film, which is the actual electricity producing portion of the solar panel, is then freed to be attached to any surface imaginable, and the rigid backing can be reused to make more solar sheets.

srep01000-f1.jpg

If this product becomes commercially available for a reasonable price, the possible uses are nearly endless. The solar stickers could be attached to buildings, windows, roofs, clothing, laptops, etc. There would be no object too small or too large. The car wrap industry would probably come out with “solar wraps” that you can roll out and stick on to your car’s exterior. I would like to see a wide brim hat for working outside that is covered in this solar tape so I could charge my iPod as I’m listening to it. How about a dog vest covered in it? Then when somebody asks why you leave your dog outside in the hot summer sun, you can say “He’s powering our home.”

srep01000-f2.jpg

This technology will drastically change the way solar power is integrated into a product. Currently the question is “Ok now where does our panel go?”, but now the question becomes “How much spare surface area do we have?”

You Might Also Like

Filed Under: Automotive/Transportation

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

zonal architecture

Addressing zonal architecture challenges in the automotive industry

zonal architecture

Addressing zonal architecture challenges in the automotive industry

A2L refrigerants drive thermal drift concerns in HVAC systems

Why outdoor charging demands specialized battery connectors

How Li-ion batteries are powering the shift in off-highway equipment

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • SMPS feedback circuit
  • connector model question
  • Can I use TLV75533PDBVR for powering ADC
  • Step Up Push Pull Transformer design / construction
  • Snooping Around is All

RSS Current Electro-Tech-Online.com Discussions

  • More fun with ws2812 this time XC8 and CLC
  • Pic18f25q10 osccon1 settings swordfish basic
  • Pickit 5
  • turbo jet fan - feedback appreciated.
  • I Wanna build a robot
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy