• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Study: New vaccine delivery system may be more effective

January 25, 2010 By Cornell University

By Krishna Ramanujan

Traditional vaccines can be ineffective and expensive. Now, an interdisciplinary team of Cornell researchers has devised a new way to make vaccines that promises to prevent diseases much more cheaply.

The new technique, described online in the journal Proceedings of the National Academy of Sciences, which involves fusing a novel component to the vaccine to boost its effectiveness, can effectively stimulate antibodies to target bacterial infections, including ulcers, flesh-eating skin infections and leptospirosis. The researchers also are working on modifying the method to create vaccines that stimulate cell-mediated immune responses required to fight viral diseases and some cancers.

“There are a lot of children dying because they can’t get a vaccine that is cheap and effective enough,” said co-author David Putnam, associate professor of biomedical engineering and chemical and biomolecular engineering. David Chen, a former graduate student in Putnam’s lab who is currently a scientist at Wyeth-Ayerst Laboratories in Andover, Mass., is the paper’s lead author, while Matthew DeLisa, associate professor of chemical and biomolecular engineering, and virologist Nikolaus Osterrieder in Cornell’s College of Veterinary Medicine are also co-authors.

Vaccines introduce a foreign protein (called an antigen) into the body to stimulate an immune response that the body then remembers when faced with the same protein in the future. The body either remembers the antigen’s unique structure or the sequences of its amino acids. To boost the immune system’s response to an antigen, researchers typically also attach an agent known as an adjuvant.

Researchers have found that the common adjuvant, aluminum hydroxide, can be unreliable because it can destroy the antigen’s structure, and the antigen’s amino acid sequences may also degrade over time, giving a vaccine limited stability. Purifying vaccines made with aluminum hydroxide involves a complicated and expensive process using specialized equipment.

Now, Cornell researchers from departments across campus have collaborated to substitute aluminum hydroxide with a new adjuvant called ClyA, which can be produced and fused with any desired protein within genetically engineered Escherichia coli bacteria. The E. coli creates a compound of ClyA fused with the desired antigen inside the E. coli cell. The ClyA-antigen then buds off from the E. coli’s cell membrane, forming a vesicle containing the vaccine. Since the vesicle is very small compared with the E. coli, purifying this delivery system involves spinning the mixture through a simple centrifuge, which separates the particles and isolates the vaccine cheaply.

“ClyA works as well as aluminum hydroxide without the drawbacks,” said Putnam. “There is a strong probability that we can fuse ClyA with any other protein, and it will give a strong immune response.”

The researchers tested their method by fusing ClyA with a green fluorescent protein, which is visible inside the vesicles. They also knew that the fluorescent protein retained its structure because the protein only lights up when properly folded. The researchers are collaborating with Cornell’s Baker Institute for Animal Health to develop animal vaccines and with Weill Cornell Medical College to develop cancer vaccines.

The study was funded by the National Institutes of Health.

SOURCE

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Lightbox circuit help
  • 12VAC to 12VDC 5A on 250ft 12AWG
  • Battery sensing circuitry for coin cell application
  • Input impedance matching network
  • Voltage Regulator Sizing Question

RSS Current Electro-Tech-Online.com Discussions

  • Lightbox circuit
  • Kawai KDP 80 Electronic Piano Dead
  • Python help with keystroke entries
  • Do resistors fail like dominoes?
  • Fuel Auto Shutoff
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy