• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Supercapacitor specifications and IEC/EN 62391–1

June 8, 2020 By Jeff Shepard

When correctly used, supercapacitors can support high power levels, high pulse power loads, and long-term back-up power needs. Understanding the nuances of supercapacitor specifications is the key to maximizing these performance capabilities.

There is some level of standardization for supercapacitor sizes, for example, a 10x30mm can supercapacitor is generally 10 Farads across the industry. Some suppliers offer it as an 11F or 12F device with different capacitance tolerances possibly, and this same trend spans in other can sizes as well, but that is often seen as a marketing strategy. What truly differs are the other electrical parameters such as DCL (leakage current) or ESR (equivalent series resistance) that directly impact performance in the use of the application. Those are not standard across the industry based on size or capacitance.

While specification documents for supercapacitors generally highlight the capacitance and voltage of the devices (and the resulting energy density), understanding the ESR is one of the critical factors related to long-term system design success. For example, while supercapacitor capacitance and ESR are both temperature-dependent, the temperature dependence of ESR is much greater than that of capacitance.

Supercapacitor ESR varies between models, series, and from manufacturer-to-manufacturer. In general, ESR decreases as capacitance increases. For example, AVX manufacturers special low ESR designed supercapacitors (SCC LE Series) that feature low ESR characteristics compared to their own standard series (SCC Series) or in the industry. These can be critical in application or for solutions that require multiple cells in series as ESR is additive. However, the sacrifice made to achieve that low ESR performance comes at the expense of DCL, as they are typically inversely proportional.

Capacitance is generally fairly stable from 25°C and up through the rated temperature range, but can drop by 25% or more at lower temperatures such as -40°C. High-performance supercapacitor designs can exhibit little capacitance change over the entire operating temperature range from -40°C and up.

Supercapacitor specifications

Supercapacitor ESR is an AC measurement typically made at 1kHz. (Image: Murata)

Supercapacitor ESR is more complex. It typically gets lower at higher temperature and higher at lower temperature. For some typical devices, the ESR at 85°C is half of the ESR at 25°C and the ESR at -40°C can be about 9 times of the ESR at 25°C. Even high-performance devices with little or no change in capacitance over the operating temperature range can exhibit 250% or greater change in ESR over the same temperature range.

Temperature, Voltage and Supercapacitor Lifetimes

It’s not only temperature that impacts supercapacitor performance; the combination of operating temperature and applied voltage is a significant consideration in determining the operating life of a supercapacitor. When considering combined temperature and applied voltage effects, ESR is an important factor.

Relatively low-temperature (e.g. 25°C) operation of supercapacitors reduces internal wearout mechanisms and the resulting increase in ESR. At higher temperatures, decreasing the applied voltage can help offset the detrimental impact of the higher temperature. Raising the applied voltage at lower temperatures can help offset increasing ESR.

The plot below shows the time taken for capacitance to drop by 30% at 1.8V and 2.5V and by 50% at 2.5V for continuous operation at a given temperature. This can be used to estimate the operating life for specific applications where the minimum allowable capacitance value is known.

Operating life vs. temperature and charge voltage. (Image: Eaton)

Charge and Discharge Characteristics

Losses measured during supercapacitor charging and discharging are related to the internal DC resistance of the device. This internal DC resistance (Ri) should not be confused with the ESR or internal AC resistance. ESR is much smaller than DC resistance. While ESR is useful when considering supercapacitor lifetimes, it is not relevant for calculatings inrush currents or other peak currents.

Voltage Balancing

Voltage balancing is an important consideration when using multiple supercapacitors in series, such as in modules, to deliver higher voltages. It’s important to make sure that individual supercapacitor voltages do not exceed the maximum recommended working voltage. Exceeding that level results in degradation of ESR and device lifetime. Voltage imbalances result from differences in capacitance. Series connected devices act as a voltage divider so higher-capacitance devices experience a higher applied voltage. Since capacitance values can vary by +/-20%, voltage balancing becomes important in these applications.

Ioxus 24V uSTART module for use in heavy equipment (Image: Ioxus)

 

In passive voltage balancing voltage-dividing resistors are placed in parallel with each supercapacitor Active voltage balancing circuits control the voltages at the nodes of series connected devices, forcing them to be equal to a fixed reference voltage. While active voltage is more complex, it tends to be more efficient and more accurate.

Bringing it All Together, IEC/EN 62391–1

Supercapacitors from different manufacturers are generally not interchangeable. In addition, supercapacitor applications vary widely from high peak current/power uses to lower current/longer duration applications. This variety of needs is addressed by the test specifications and parameter requirements defined in IEC/EN 62391–1, Fixed electric double layer capacitors for use in electronic equipment. The standard defines four application classes, according to discharge current levels:

  • Energy storage, mainly used for driving motors require a short time operation,
  • Power, higher power demand for a long duration operation,
  • Instantaneous power, for applications that requires relatively high current pulses or peak currents up to several hundreds of amps even with short operating times, and
  • Memory backup.

References:

Murata Supercapacitor Technical Note
Eaton Supercapacitor Application Guidelines
IEC 62391-1:2015, Fixed electric double layer capacitors for use in electronic equipment
Skeleton Technologies, Ultracapacitor Voltage, Temperature and Lifetime
Wikipedia Supercapacitor

You may also like:

  • supercapacitor operation
    Supercapacitor operation – a higher power source

  • Applying large banks of supercapacitors

  • The 40-year battery pack

  • Researchers eyeball potassium batteries as sustainable replacements for lithium cells

  • Get ready for supercaps with 5x boost in power/energy density

Filed Under: FAQ, Featured, Power Electronic Tips Tagged With: FAQ

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Unusual gap shape of ETD59 ferrite core?
  • Vco cadencd
  • WH-LTE-7S1 GSM module and SIM card problem
  • Effect of variable gain amplifier and LNA on the input RF signal's phase
  • Pic 16f877A Hex file

RSS Current Electro-Tech-Online.com Discussions

  • Very logical explanation on low calue C3
  • HV Diodes
  • intro to PI
  • Need help working with or replacing a ferrite tube
  • Help wanted to power an AC120v induction motor ( edited from Brushless motor - thank you @SHORTBUS= )

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy