• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

The World-Record 53.3 Tb/s Optical Switching Capacity For Data-Center Networks

October 6, 2017 By National Institute of Information and Communications Technology (Nict)

The National Institute of Information and Communications Technology (NICT, President: Hideyuki Tokuda, Ph.D.) has successfully demonstrated a world-record for switching capacity of 53.3 Tb/s for short-reach data-center networks. This demonstration makes use of spatial division multiplexing (SDM) over multi-core optical fibers (MCFs) and a newly developed high-speed spatial optical switch system, enabling full packet-granularity. We believe this newly developed data-center network provides a significant improvement of network efficiency and end-to-end energy consumption per bit compared to today’s optical circuit, fully-electronic packet switching networks. The results of this demonstration were selected for presentation as a post-deadline paper at the prestigious 43rd European Conference on Optical Communications (ECOC) in Gothenburg, Sweden, on September 21, 2017.

[Background]

Due to a continuous increase of network traffic demand, the capacity of optical networks using standard single mode fiber (SMF) is approaching its physical limits. SDM technology, including MCFs, has been proposed to alleviate the capacity limits imposed by SMFs. Furthermore, it is also important to reduce the granularity of optical networks. Currently, commercial optical networks can switch optical wavelength channels that operate continuously in time. However, the actual information is transmitted over the network in smaller units, referred to as packets. Hence, the capability to transmit these packets directly on the optical domain can increase the overall network efficiency and replacing electronic switching with optical switching can also reduce the total end-to-end energy consumption per bit.

[Achievements]

In this work, NICT developed a high-speed 7-core-joint optical switching system that can switch all the cores of a 7-core MCF simultaneously with an ultrafast switching speed of 80 ns. The system consists of multiple electro-absorption (EA) optical switch elements with several nanoseconds switching speed. It also contains a switch controller, capable of reading the destination address of packets and controlling multiple EA switches simultaneously. The optical switching system can be used in an optical network switching node to realize several functions. Using this optical switching system, NICT built a testbed of a time-slotted optical network, capable of achieving full packet granularity. This testbed used 64 wavelength channels, modulated at 32 Giga Baud with polarization division multiplexing (PDM) quadrature phase shift keying (QPSK). This delivers a nominal capacity of 53.3 tera bits per second. In the testbed, three MCF segments were used: a 19-core 28 km fiber, a 19-core 10 km fiber, and a 7-core 2 km fiber. On each fiber, 7-cores were used in this demonstration to carry information signals. The results of this work were presented as a post-deadline paper on the prestigious 43rd European Conference on Optical Communications (ECOC), held in Gothenburg, Sweden, from September 17, 2017 until September 21, 2017.

[Future Prospects]

In the future, we hope to increase the network capacity by developing new optical switches with even faster response, lower insertion loss and flatter frequency response, and to investigate coherent burst-mode receivers with high-order modulation formats for greater spectral efficiency.

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Sendust vs Ferrite for SMPS
  • On/Off Slide Switch Reassembly Help
  • sim7090g
  • Industrial Relay Board Design for Motorcycle Use
  • connector model question

RSS Current Electro-Tech-Online.com Discussions

  • using a RTC in SF basic
  • Is AI making embedded software developers more productive?
  • Wierd makita battery
  • ac current limiting
  • I Wanna build a robot
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy