• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • Covid-19
    • DesignFast
    • Ebooks / Tech Tips
    • EE Forums
      • EDABoard.com
      • Electro-Tech-Online.com
    • FAQs
    • 2020 LEAP Awards
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars
    • White Papers
  • Videos
    • Teardown Videos
  • Lee’s Teardowns
    • Teardown Videos
  • Learning Center
  • 5G
  • Women in Engineering

Thermoelectric coolers deliver active cooling in high temperature environments

September 2, 2020 By Aimee Kalnoskas

Thermoelectric coolers deliver active cooling in high temperature environmentsLaird Thermal Systems has developed a thermoelectric module series that is rated for high temperature in emerging optoelectronic applications. The HiTemp ETX Series thermoelectric cooler has a robust construction that allows it to survive in temperatures up to 150°C, exceeding most outdoor applications. It is assembled with advanced thermoelectric materials that boosts cooling capacity by up to 10% compared to traditional thermoelectric coolers. These solid-state heat pumps feature a higher thermal insulating barrier when compared to standard thermoelectric materials creating a maximum temperature differential (Delta T) of up to 83°C.

The enhanced thermoelectric materials are combined with a proprietary construction that prevents performance degradation in high-temperature environments, a common problem with standard grade thermoelectric coolers. The HiTemp ETX Series maintains a high coefficient of performance (COP) to minimize the amount of input power required to operate and reduces the heat rejection requirement to the hot side, which is critical in poor heat sinking applications.

Many temperature-sensitive optoelectronic devices require active cooling to keep below their maximum operating temperature in outdoor environments. Common applications include LiDAR and CMOS sensors for autonomous systems in vehicles and drones, digital light processors (DLP) used in 3D machine vision and advanced lighting systems, and optical transceivers.

The HiTemp ETX Series is available in over 50 models covering various footprints, cooling capacities, voltage ranges, and finishing options.

Filed Under: Power Electronic Tips Tagged With: lairdthermalsystems

Primary Sidebar

EE Training Center Classrooms

“ee

“ee

“ee

“ee

Featured Resources

  • NEW! EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure

Autonomous & Connected Vehicles 2019


RSS Current EDABoard.com discussions

  • PSoC1 programming
  • Kitchen balance load cells 10 kg
  • CLOCK DIVIDER
  • dsPIC33f ADC reading voltage help
  • Simulation of a board in CST

RSS Current Electro-Tech-Online.com Discussions

  • infrasonic frequency
  • Definitive Technology Subwoofer repair
  • Dust extractor remote switch
  • Best way to reverse a DC motor
  • Touch circuit sound, led. 555 timer

Oscilloscopes Product Finder

Follow EE World on Twitter

Tweets by @EEWorldOnline

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analog IC Tips
  • Connector Tips
  • Engineer's Garage
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips
  • 5G Technology World

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookFollow us on YouTube Add us on Instagram

Copyright © 2021 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy