• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Threat Identification Tool For Cybersecurity In Self-Driving Cars

January 5, 2018 By Susan Carney, University of Michigan

Instead of taking you home from work, your self-driving car delivers you to a desolate road, where it pulls off on the shoulder and stops.

You call your vehicle to pick you up from a store and instead you get a text message: Send $100 worth of Bitcoin to this account and it’ll be right over.

You buckle your seatbelt and set your destination to a doctor’s appointment, but your car won’t leave your driveway. It senses it’s been hacked and your home is its pre-programmed safe destination.

These three hypothetical scenarios—posited in a new white paper by University of Michigan researchers working with Mcity—illustrate the breadth of the cybersecurity challenges that must be overcome before autonomous and connected vehicles can be widely adopted. While every new generation of auto tech brings new security risks, the vulnerabilities that come along with advanced mobility are both unprecedented and under-studied, the paper states.

The white paper introduces a tool called the Mcity Threat Identification Model, which could help academic and industry researchers analyze the likelihood and severity of potential threats. The new model outlines a framework for considering: the attacker’s skill level and motivation; the vulnerable vehicle system components; the ways in which an attack could be achieved; and the repercussions, including for privacy, safety and financial loss.

The tool is believed to be the first of its kind focused on automated vehicles. Mcity, led by U-M, is the nation’s largest public-private partnership working to advance connected and automated mobility.

Understanding the threats

“Cybersecurity is an overlooked area of research in the development of autonomous vehicles,” said Andre Weimerskirch, lead author of the paper, who leads Mcity’s cybersecurity working group and is also vice president of cybersecurity for Lear Corp. “Our tool marks not only an important early step in solving these problems, but also presents a blueprint to effectively identify and analyze cybersecurity threats and create effective approaches to make autonomous vehicle systems safe and secure.”

Connected and automated vehicles are what researchers call a cyber-physical system, with components in the “real” and virtual worlds. The safety stakes are as high as these systems are hard to protect. Connected and automated vehicles will face familiar threats, and new ones, the report describes.

They will be vulnerable to those that regularly disrupt computer networks, like data thieves of personal and financial information, spoofers who present incorrect information to a vehicle, and denial-of-service attacks that move from shutting down computers to shutting down cars.

In addition, new threats unique to automated vehicles themselves emerge—hackers who would take control over or shut-down a vehicle, criminals who could ransom a vehicle or its passengers, and thieves who direct a self-driving car to relocate itself to the local chop-shop, for example.

Finally, there are security threats to the wide-ranging networks that will connect with autonomous vehicles—the financial networks that process tolls and parking payments, the roadway sensors, cameras and traffic signals, the electricity grid, and even our personal home networks.

“It might seem convenient for an autonomous car that gets within 15 minutes of your home to automatically turn on your furnace or air conditioner, open the garage and unlock your front door,” the researchers write. “But any hacker who can breach that vehicle system would be able to walk right in and burglarize your home.”

The new threat identification model

To demonstrate the insights the new model can provide, the researchers used it to examine vulnerabilities in automated parking—both parking assist technology and the more advanced remote, self-parking. They determined that the most likely attacks are: a mechanic disabling the range sensors in park-assist or remote parking in order to require additional maintenance, and an expert hacker sending a false signal to your vehicle’s receiver to turn off remote parking. Both received sixes on the researchers’ 10-point scale, with 0 being lowest probability.

At the same time, the type of attack that would have the most impact would be a knowledgeable thief spoofing your remote parking signal in order to steal your car. This type of attack received a 7 on the researchers’ scale of impact.

“Without robust, fool-proof cybersecurity for autonomous vehicles, systems and infrastructure, a viable, mass market for these vehicles simply won’t come into being,” said Huei Peng, Mcity director and the Roger L. McCarthy Professor of Mechanical Engineering. “Funding this kind of research is a critical part of Mcity’s mission to help break down barriers to widespread deployment of connected and automated vehicle technology.”

The white paper is titled “Assessing Risk: Identifying and Analyzing Cybersecurity Threats to Automated Vehicles.” The thread model is also detailed in a paper, “Risk Assessment for Cooperative Automated Driving,” published in the Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy.

You Might Also Like

Filed Under: Automotive/Transportation

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Discrete IrDA receiver circuit
  • No Output Voltage from Voltage Doubler Circuit in Ansys Nexxim (Harmonic Balance Simulation)
  • ISL8117 buck converter blowing up
  • I²C Ground Isolation with Series Battery Cells (ULIN13-01 + PIC18LF4520)
  • Mean offset increase in post-layout simulation of clocked comparator

RSS Current Electro-Tech-Online.com Discussions

  • Kawai KDP 80 Electronic Piano Dead
  • using a RTC in SF basic
  • Saga 1400sv vinyl cutter motherboard issue
  • Unknown smd. Any ideas?
  • Display TFT ST7789 (OshonSoft Basic).
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy