• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Valleytronics Route Towards Reversible Computer

December 21, 2017 By Singapore University of Technology and Design

In many two-dimensional (2D) materials, electrons not only possess charge and spin, but further exhibits an unusual quantum feature known as “valley.” Simply speaking, electrons residing in many 2D materials can live in well-separated energy minima, and the “address” describing which minima these electrons belong to is known as “valley.” The use of this “valley address” to encode and process information forms the core of a new vibrant research field known as “valleytronics.”

Despite much anticipation of valleytronics being a candidate for ‘beyond CMOS’ technology and to continue the legacy of Moore’s law, its progress is severely hindered by the lack of practical designs for a valleytronic-based information processing unit. One major challenge in valleytronic is the construction of a “valley filter.” Valley filter can produce electrical current composed dominantly of electrons from only one specific “valley.” It serves as a fundamental building block in valleytronics.

By harnessing the unusual electrical properties of 2D materials such as few-layer black phosphorus and topological Weyl/Dirac semimetal thin films, researchers from the Singapore University of Technology and Design (SUTD) designed a versatile all-electric-controlled valley filter and demonstrated, for the first time, a concrete working design of valleytronic logic gate capable of performing the full set of two-input Boolean logics.

“A particularly remarkable finding is a previously unexplored approach of achieving logically-reversible computation by storing information in the electron’s valley state,” said first-author Dr Yee Sin Ang from SUTD.

Conventional digital computers process information in a logically-irreversible fashion. This leads to a serious logical issue — upon receiving a computational output, an end-user cannot unambiguously identify the original input information that produces this output.

Making digital computing logically-reversible is not only interesting in terms of fundamental information science, but also has broad applications in areas such as cryptography, signal and image processing, quantum computing, and is ultimately required to improve the energy efficiency of digital computers beyond the thermodynamic bottleneck also known as Landauer’s limit. Due to its immense potentials, enormous research efforts have been devoted to the search for a practical reversible computer since the 1970s.

The traditional way of making a logically-reversible computer relies heavily on complex circuitries that inevitably generate large quantities of wasteful bits. These complex and wasteful methods have prevented reversible computing from gaining widespread industrial and commercial interests.

The key novelty of the valleytronic-based reversible logic gate proposed by SUTD researchers is that the device stores additional bits of input information in the valley state of the computational output to achieve logical-reversibility. This valleytronic approach bypasses the need of complex circuitries and significantly reduces the generation of wasteful bits. Such simple architecture is also more compatible with the ever-growing industrial and commercial demands for compact smart devices with ever-shrinking physical sizes.

Co-author and principal investigator of this research, SUTD Prof Ricky Ang, said: “The union of valleytronics, digital information processing and reversible computing may provide a new paradigm towards the future of ultimately energy-efficient computer with novel functionalities.”

(a) This is aSchematic drawing of the valleytronic logic gate (b) Operation of the valleytronic logic gate (c-e) Electrical characteristics of the valleytronic logic gate (f) Traditional reversible logical operation (g) Valleytronic-based reversible logical operation Credit: SUTD
DesignFast Banner version: 2cc8ae61

Filed Under: Components

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

April 2022 Special Edition: Internet of Things Handbook

How to turn off a smart meter the hard way Potential cyber attacks have a lot of people worried thanks to the recent conflict in Ukraine. So it might be appropriate to review what happened when cybersecurity fi rm FireEye’s Mandiant team demonstrated how to infiltrate the network of a North American utility. During this…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Help with Verilog replicate operator
  • ESP Serial Communication Problem with RS232
  • How to mark layer comments in CAP of spef file using StarRC
  • MAX5389 resetting by noise
  • Simulation of resonator in HFSS

RSS Current Electro-Tech-Online.com Discussions

  • Will Header and socket hold this PCB OK?
  • Relaxation oscillator with neon or...
  • software PWM
  • MPlab8 remove page breaks in list file
  • ATOM Diy module

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy