• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology

March 7, 2014 By EurekAlert

Vertimass LLC, a California-based start-up company, has licensed an Oak Ridge National Laboratory technology that directly converts ethanol into a hydrocarbon blend-stock for use in transportation fuels.

The ORNL technology offers a new pathway to biomass-derived renewable fuels that can lower greenhouse gas emissions and decrease U.S. reliance on foreign sources of oil.   

“Vertimass is very pleased to be partnering with ORNL to commercialize this revolutionary technology that can broaden the market for alternative fuels, “ said Vertimass chairman William Shopoff. “We have assembled a team of industry and technology leaders, including Dr. Charles Wyman, our president and CEO, who will take this novel catalyst from the lab to the marketplace.  We see this technology as a significant step in moving the United States toward energy independence.”

The technology developed by ORNL’s Chaitanya Narula, Brian Davison and Associate Laboratory Director Martin Keller uses an inexpensive zeolite catalyst to transform ethanol into hydrocarbon blend-stock. The resulting liquid can be blended at various concentrations into gasoline, diesel and jet fuels without negatively affecting engine performance. After mixing with petroleum-derived fuels, the blend-stock does not require modifications to the existing distribution infrastructure.

“This technology is a pathway to overcome the ethanol blend-wall,” Narula said. “The blend-stock can be mixed into gasoline at higher concentrations than ethanol’s current limit of 10 percent; plus it can be added to diesel and jet fuel. It’s completely consumer-transparent.”

Vertimass anticipates that the ORNL technology will be in demand by existing corn-based ethanol production plants, as well as new refineries coming online that aim to convert non-food crops such as switchgrass, poplar wood and corn stover into biofuels. The technology could also supply a source of renewable jet fuel required by recent European Union aviation emission regulations.

“We plan to move quickly to make a bolt-on technology easily accessible to ethanol producers so they can expand their product line,” Shopoff said. “It could also be incorporated into new plant designs to further reduce operating costs. We hope to move from the laboratory scale to a commercially available technology within four to six years.”  

Preliminary ORNL analysis in collaboration with the National Renewable Energy Laboratory in Colorado shows the catalytic technology could be retrofitted into existing bio-alcohol refineries at various stages of ethanol purification. The direct conversion process produces minimal amounts of ethylene by-product, making the technology more cost-effective than previous approaches. The ORNL team’s lab-scale tests also indicate the catalyst can operate at relatively low temperatures and pressures and can be regenerated under mild conditions, helping the technology withstand long periods of operation without significant degradation.

The ORNL research was supported by DOE’s Office of Energy Efficiency and Renewable Energy. Initial funds were from the ORNL Laboratory Directed Research and Development and Technology Innovation programs and from the BioEnergy Science Center, which is supported by the U.S. DOE Office of Science.

Vertimass LCC is based in Irvine, Calif. The mission of Vertimass LLC is to develop and widely license breakthrough technologies that substantially expand the use of sustainable transportation fuels that reduce greenhouse gas emissions and improve energy security and domestic economies. Commercialization will lead to the widespread use of proprietary Vertimass technology for low cost production of sustainable transportation fuels for aircraft and heavy and light duty vehicles from multiple sources of biomass on a large scale. For more information, visit http://www.vertimass.com/.

Original release: http://www.ornl.gov/ornl/news/news-releases/2014/vertimass-licenses-ornl-biofuel-to-hydrocarbon-conversion-technology—

DesignFast Banner version: 2cc9602b

Filed Under: Power Electronic Tips

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

Our second 5G Handbook is now available

Featuring 15 articles, the 2022 5G Handbook looks at private networks, timing, connectivity, latency, mmWaves, test, and other topics.

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • FPGA LVDS with separate clock
  • Mathematical formula that converts voltage to weight the HX711 is using
  • how to use a SPICE model LIB for simulation without OLB file
  • Regarding circuit design
  • PSRR of folded cascode opamp

RSS Current Electro-Tech-Online.com Discussions

  • Identify a circuit.
  • Help diagnosing a coffee maker PCB
  • undefined reference header file in proteus
  • Microcontrollable adjustable and switchable constant current source for driving LED's
  • Interfacing ZMOD4410 with Arduino UNO

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy