• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Wind farms to blink only when necessary

February 10, 2014 By EurekAlert

Wind power has been booming in Germany since the beginning of the energy transition. However, the voices of critics have been growing along with the increasing number of wind turbines. Citizens’ initiatives in Lower Saxony and Baden-Württemberg for instance have founded a umbrella association meant to provide local groups with a political say. Residents primarily feel encroached on. Among other things, they complain about the noise of the turning rotors, but the blinking beacon lights at the top of the masts also bother them. These signals are meant to warn low-flying aircraft and prevent the aircraft from colliding with the masts. The beacons are in continuous operation at night and in fog. Local residents perceive the permanent flashing as an annoyance, especially in the case of larger wind farms. In addition, the red warning beacons attract birds, which are fatally injured through collisions with the rotors.

Sensors spread safety umbrella

The Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR together with the commercial firm Industrial Electronics and the wind farm engineering firm Dirkshof Wind GmbH are working on a solution to the problem in a project named “Parasol”. The beacons should only be switched on in instances when the facility is actually approached by an airplane at the corresponding altitude. In this way, the periods when the warning lights are flashing are considerably shortened. The new system that detects and analyzes air traffic in the area of the wind farms is based on passive radar sensors. They are called passive devices because they emit no radar beam of their own. Instead, they utilize local radio station frequencies to locate airplanes. Thanks to the format of their signals, digital signals like DAB+ and DVB-T are especially well-suited for differentiating among objects. “We are able to operate the system without a transmitter module of its own, and dependent on weather conditions. A transmitter license required for active radar systems it not required for this, so it can be operated cost-effectively,” says Heiner Kuschel, department head at FHR in Wachtberg. “The collision warning lights only switch on when an airplane is within a radius of four kilometers and flying below an altitude of about 2500 feet (700 meters). We use the passive radar sensors to essentially extend a protective umbrella over the wind farm like a parasol.”

See: Photos of the Day: Wind farms to blink only when necessary

The radio station transmitters send out signals that are reflected by the airborne objects. The passive radar sensing system uses mathematical algorithms to compare the reflected signals with the direct radio station signals it receives. The distance, position, and velocity of the approaching aircraft can be calculated using this comparison. The system comprises three sensors, each of which consists of an antenna unit attached to the wind turbine mast, and signal processing located within the mast. A CPU in each wind farm for evaluating the data completes the system. A prototype has already been installed and successfully tested at a wind farm operated by Dirkshof in the town of Reußen-Köge near Husum, Germany. Kuschel and his team are presently optimizing the signal detection algorithms. Parasol is expected to go into operation in 2015. “We hope that more local residents will agree to construction of wind farms through the installation of the collision warning lights. The goal of Parsol is to advance the state of renewable energy and make Germany more competitive in the economic arena,” says Kuschel. The German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) provided 1.2 million EUR (USD $1.8 million) in funding for the project.

Original release: http://www.eurekalert.org/pub_releases/2014-02/f-wft021014.php

DesignFast Banner version: b9bfab05

Filed Under: Power Electronic Tips

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Effect of variable gain amplifier and LNA on the input RF signal's phase
  • Code Optimization
  • Cosmos DB with AT commands by using SIM868e
  • Natural Convection Heatsink for 80W power dissipation?
  • simple LSB explanation please

RSS Current Electro-Tech-Online.com Discussions

  • Review of electric circuit with Arduino
  • ICM7555 IC duty cycle limit at high frequency?
  • How to quickly estimate lead acid battery capacity ?
  • Battery charging indicator circuit design
  • intro to PI

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy