• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

World’s first Doppler LiDAR or autonomous fleets – interference free 450+ meters

January 8, 2019 By Aimee Kalnoskas Leave a Comment

One single Doppler colored Blackmore lidar frame instantly shows velocity and range of traffic and pedestrians without any interference.

Blackmore Sensors and Analytics, Inc. announced two new product lines: the Blackmore AFDL is a Doppler lidar system specifically designed for autonomous fleet deployment. And the flexible Blackmore LDP is a development platform for early deployment into emerging autonomous markets such as long-haul trucking and air taxi systems. These two products address the massive demand for smarter, interference-free lidar solutions across the automotive market and beyond.

With more than $1 billion invested in the lidar space since 2015, it’s increasingly difficult for end users to identify a solution that delivers as promised. This is because the majority of lidar vendors focus on using amplitude modulation (AM) pulse-based lidar technologies. As a result, OEMs and suppliers are struggling with the inadequate data created by these power-hungry AM lidar sensors. And as lidar use becomes more prevalent, interference-prone AM systems are less effective and unsafe.

To address this, in 2015 Blackmore introduced the world’s first frequency-modulation (FM) lidar systems for autonomous vehicles, which measure both range and velocity simultaneously. For context, chipset-driven industries – including cell phones, automotive radars and GPS systems – also migrated from AM to FM modulation in order to deliver interference-free data at long range, using less power. “The reality is that physics ultimately wins, no matter how much funding chases inferior alternatives,” said Dr. Randy Reibel, CEO and co-founder of Blackmore. “But more importantly, FM-based Doppler lidar sensors are safer for self-driving applications.”

Blackmore’s team has spent more than 10 years refining FM techniques and has been shipping high-performance lidar systems that are easy to use for automotive applications since 2017. Blackmore continues to propel this advanced technology forward with its two new products.

Developers building autonomous fleets have long craved Doppler lidar, in order to access the tremendous benefits provided by its velocity-enabled point clouds. Blackmore’s AFDL resolves the challenges that stymied AM lidar. As a result, fleets will see a dramatic increase in reliability and lower operating costs by reducing time-to-perception and data-annotation overhead.

Specifically, the multi-beam Doppler lidar sensor delivers instantaneous velocity and range data beyond 450 meters, with power consumption and size similar to a small laptop. The system supports a 120 x 30-degree field of view, software-defined operation, precise velocity measurements with accuracy down to 0.1 meters/second on objects moving up to 150 m/s (335 mph), and measurement rates in excess of 2.4 million points/second. Blackmore’s AFDL is available for pre-order and will ship to customers in Q2 for less than $20,000. Samples are shipping to strategic partners now.

From air taxis and long-haul trucking to airport operations and industrial warehouse robotics, a number of industries want access to Blackmore’s precise, velocity-informed lidar. To address this demand and support expansion into new markets, Blackmore is now shipping its Lidar Development Platform (LDP). The highly flexible platform pairs Blackmore’s powerful lidar engine with interchangeable optical sensor heads to make it easy for companies to explore, test and adapt Doppler lidar for their specific needs. “Development partners want to be part of the design process, and this new lidar platform helps our customers efficiently hone their spec requests and better understand the advantages that Doppler lidar brings to their applications,” said Jim Curry, co-founder and vice president of analytics at Blackmore.

Because Blackmore uses software-defined lidar data, customers can tailor the operational parameters – including field of view, range, point density and scan speed – on the fly with its flexible API.  The long-range forward-look optical head covers a 40 x 40-degree field of view, provides two beams to increase point throughput to greater than 1.2 million points/second, and can reach out well beyond 500 meters of range extent. Additional sensor heads will be introduced over time, and prices will vary depending upon configuration. Blackmore’s LDP is available for order immediately.

Product images and videos of Blackmore’s Doppler Lidar in action can be accessed here.

DesignFast Banner version: 2cc01971

Filed Under: Microcontroller Tips Tagged With: blackmoresensorsandanalytics

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

Our second 5G Handbook is now available

Featuring 15 articles, the 2022 5G Handbook looks at private networks, timing, connectivity, latency, mmWaves, test, and other topics.

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How do design a circuit that tells the difference of 2 Voltages is within range
  • DC to DC buck converter
  • SNR input, what is it?
  • Frequency of FM transmitter not changing
  • What's the deal with all these "MPPT" IC's with no current sense?

RSS Current Electro-Tech-Online.com Discussions

  • Shock from Oscilloscope ground clips
  • Finally switched to Linux.
  • How to quickly estimate lead acid battery capacity ?
  • IRS2453 the H circuit
  • Ampro 16mm Stylist projector woes.

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy