• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

WPI receives $1.2 million NIST award for pioneering study of wireless body area networks

March 18, 2010 By EurekAlert

WORCESTER, Mass. ? The Center for Wireless Information Network Studies (CWINS) at Worcester Polytechnic Institute (WPI) has received a three-year, $1.2 million award from the National Institute of Standards and Technology (NIST) to conduct a groundbreaking study of the propagation of radio waves around and through the human body. Led by Kaveh Pahlavan, professor of electrical and computer engineering and director of CWINS, the research will help speed the development of and create standards for body area networks (BANs), a new generation of wireless networks that support a variety of medical applications, from monitoring the functioning of implanted devices to helping perform virtual endoscopic exams.

The award is one of only 27 funded (from 1,300 proposals), through NIST’s AARA (American Recovery and Reinvestment Act) Measurement, Science & Engineering Grants program.

BANs are made up of compact medical sensors that can be worn by individuals or implanted in their bodies, depending upon the application. Data from the sensors are transmitted to base stations and then on to hospitals or clinics, where they may be monitored and analyzed. Data from these sensors can also be used to pinpoint the location of medical devices, for example implants or tiny sensors ingested to study the digestive system. Though most initial applications of BANs are expected to be in health care, the networks will likely find uses in many other areas. For example, they may be used to monitor athletes or military personnel.

BANs may make it possible for doctors and other health care professionals to remotely monitor patients around the clock. Data from a BAN installed in or on a person with a history of cardiac health issues, for instance, might alert doctors to heart rhythm irregularities, enabling emergency personnel to respond before a potentially fatal heart actually occurs. Similarly, BANs may make it possible for doctors to remotely monitor patients with diabetes, whose insulin levels could change abruptly, or people with seizure-causing disorders. And since BANs can be interactive, health care professionals could use them to deliver treatment from afar–for example, to patients with pacemakers or installed insulin pumps.

While BAN technology is still new, the industry is expected to grow rapidly in the coming years. Indeed, the FCC has recently allocated specific spectrum bands for wireless medical communications, and committees have been formed to address standardization of these emerging technologies. In fact, standardization is one of the areas that the WPI research aims to address, Pahlavan says.

“Because innovations in wireless networks are based on radio propagation measurement science and engineering, standards committees devote considerable effort to measuring propagation characteristics,” he notes. “It is essential to have consistent standards in order to evaluate the respective performances of alternative wireless solutions.”

The goal of Pahlavan’s team, which enjoys an international reputation for its research on radio frequency propagation and localization in wireless data networks, is to apply what it has learned by studying larger-scale networks (from wireless local networks such as Wi-Fi to personal networks like Bluetooth) to developing a comprehensive program for measuring the characteristics of radio frequency propagation in and around the body. Measurement and modeling of radio propagation and localization at such a small scale is expected to be challenging, Pahlavan notes. His lab will use a combination of empirical measurements, computational modeling and studies of phantoms (structures that simulate the characteristics of the human body) to complete the work.

“This research will help propel the growth of this powerful technology in the United States and help pave the way for standardization for body-area networks,” Pahlavan says. “That growth, in turn, has both considerable economic implications and significant potential to improve healthcare.”

SOURCE

Filed Under: Components

Primary Sidebar

EE Training Center Classrooms.

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • RF Testing Basics
  • Power Supply Fundamentals
  • Women in Engineering
  • R&D 100 Podcast
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • I need help building Yocto (poky) for a specific HW/Target > Licheepi Zero Dock (Allwinner V3S)
  • Input Reference Clock for PLL aside from Crystal Oscillator
  • Digital Attenuator Power Dissipation
  • 3 Phase - Phase Cross Detection (Not Zero Cross)
  • Detecting audio (with limited processing power)

RSS Current Electro-Tech-Online.com Discussions

  • Capacitor to eliminate speaker hum
  • Help identify a part
  • Digital Display Information
  • Is there a discord for this forum?
  • Peltier control

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy