• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Yale Researchers Use Genetic Code To Engineer a Living Protein

August 25, 2011 By Yale UniversityYale University

New Haven, Conn. — Yale University researchers have successfully re-engineered the protein-making machinery in bacteria, a technical tour de force that promises to revolutionize the study and treatment of a variety of diseases.

“Essentially, we have expanded the genetic code of E. coli, which allows us synthesize special forms of proteins that can mimic natural or disease states,” said Jesse Rinehart of the Department of Cellular and Molecular Physiology and co-corresponding author of the research published in the August 26 issue of the journal Science.

Since the structure of DNA was revealed in the 1950s, scientists have been working hard to understand the nature of the genetic code. Decades of research and recent advances in the field of synthetic biology have given researchers the tools to modify the natural genetic code within organisms and even rewrite the universal recipe for life.

“What we have done is taken synthetic biology and turned it around to give us real biology that has been synthesized,” Rinehart explained.

The Yale team — under the direction of Dieter Söll, Sterling Professor of Molecular Biophysics and Biochemistry, professor of chemistry and corresponding author of the paper — developed a new way to influence the behavior of proteins, which carry out almost all of life’s functions.  Instead of creating something new in nature, the researchers essentially induced phosphorylation, a fundamental process that occurs in all forms of life and can dramatically change a protein’s function.  The rules for protein phosphorylation are not directly coded in the DNA but instead occur after the protein is made.  The Yale researchers fundamentally rewrote these rules by expanding the E. coli genetic code to include phosphoserine, and for the first time directed protein phosphorylation via DNA. 

This new technology now enables the production of human proteins with their naturally occurring phosphorylation sites, a state crucial to understanding disease processes. Previously, scientists lacked the ability to study proteins in their phosphorylated or active state. This has hindered research in diseases such as cancer, which is marked by damagingly high levels of protein activation.

“What we are doing is playing with biological switches — turning proteins on or off — which will give us a completely new way to study disease states and hopefully guide the discovery of new drugs,” Rinehart said.

“We had to give some very ancient proteins a few modern upgrades,” Söll said.

Söll and Rinehart now are attempting to create proteins in states known to be linked to cancer, type 2 diabetes, and hypertension. Both men, however, stressed the technique can be done for any type of protein.

“Dr. Söll and his colleagues have provided researchers with a powerful new tool to use in uncovering how cells regulate a broad range of processes, including cell division, differentiation and metabolism,” said Michael Bender, who oversees protein synthesis grants at the National Institute of General Medical Sciences of the National Institutes of Health.

Other authors from Yale are lead authors Hee-Sung Park and Michael J. Hohn, Takuya Umehara and L-Tao Guo. They collaborated with Edith M. Osborne, Jack Benner, and Christopher J. Noren from New England Biolabs.

The work was funded by grants from the National Science Foundation and the National Institutes of Health via the National Institute of General Medical Sciences and the National Institute of Diabetes and Digestive and Kidney Diseases.

 

PRESS CONTACT: Bill Hathaway 203-432-1322

SOURCE

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Industrial Relay Board Design for Motorcycle Use
  • Sendust vs Ferrite for SMPS
  • On/Off Slide Switch Reassembly Help
  • sim7090g
  • connector model question

RSS Current Electro-Tech-Online.com Discussions

  • using a RTC in SF basic
  • Is AI making embedded software developers more productive?
  • Wierd makita battery
  • ac current limiting
  • I Wanna build a robot
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy