• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Measuring resonance with a scope and signal generator

December 23, 2021 By dherres

One of the first things EE students learn in their ac circuits course is resonance. Electrical resonance, to quickly review, arises in an electric circuit at a frequency called the resonances frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, resonance happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.

Of course, resonance can also arise in mechanical vibration scenarios and other natural settings. Perhaps one of the more interesting natural phenomenon involving resonance is tidal resonance at the Bay of Fundy. Here coastal waters exhibit one of the resonant modes of the ocean. Ocean resonance effects are most apparent when a continental shelf is a quarter of a wavelength wide. A tidal wave is then reinforced by reflections between the coast and shelf edge. The result is a much higher tidal range. The speed of ocean waves is equal to the square root g x h, where g is the acceleration of gravity and h is the depth of the ocean. For a continental shelf having a depth of 100 m, the speed is about 30 m/sec. So if the tidal period is 12 hours, a quarter-wavelength shelf will have a width of approximately 300 km.

It’s easy to calculate the resonance frequency of ordinary components and circuits. An LC circuit resonates when driven at a frequency at which the inductive and capacitive reactances are equal in magnitude. This resonant frequency is ω=1/√LC, where L is the inductance in Henries and C is the capacitance in Farads. The angular frequency, ω, has units of radians per second. The equivalent frequency in units of hertz is f = ω/2π = (1/2π) × √LC.

capacitor self resonance

Capacitor behavior at the self-resonance point and a commonly used equivalent circuit as depicted by Panasonic Industrial.

The problem with calculating a component or circuit resonance is that the equations typically assume ideal components. The reality is more complicated. For example, capacitors obey the classic capacitive reactance equation Xc=1/2πfC only up to a certain frequency, usually specified in the data sheet, at which point they self resonate because of parasitic inductive elements within their internal construction. At that point Xc dips to zero because the parasitic inductive reactance equals the capacitive reactance. There are analogous effects for inductors and even ordinary resistors.

To complicate matters a bit more, the self resonant frequency given in data sheets assumes external conditions that may not represent those of the actual circuit. In leaded capacitors, for example, the data-sheet self-resonance frequency typically assumes a relatively short lead length. If the real leads are longer, the parasitic inductance rises, lowering the self-resonant frequency.

The realities of non-ideal components can also affect resonating entities that are not circuits or electronic components. Piezoelectric transducers for power ultrasonics are an example. Most of these are of the Langevin type where one or more piezoceramics are mechanically compressed (prestressed) between a front and back driver. Schematically, these piezo transducers appear as series-resonant L-C circuits. Electrodes on either side of the piezo plate form a capacitor, and the resonating mass acts as an inductance. The exact resonant frequency of the transducer depends somewhat on the environment in which it vibrates. Driving the transducer at its resonant frequency maximizes the power transfer from the transducer into the media in which it works.

Simple measurement setup for viewing the resonance of a DUT.

In such cases, it may be more accurate to measure the resonant frequency rather than calculate it. The simple way of testing for the resonance frequency is to apply a signal generator to the DUT while monitoring the voltage across it with an oscilloscope. Sweeping the frequency upward while monitoring the voltage across the device should produce a scope display of voltage that hits a minimum at the resonance point of the DUT, indicating the point at which reactance is at a minimum. It may take some rocking of the generator frequency back and forth to determine the voltage minimum.

Also note it is a good practice to insert a resistance in series between the signal generator output and the resonant circuit. The point of this practice to prevent the signal generator from directly driving a circuit having essentially zero resistance, i.e. a short circuit, at the resonance point. Generally speaking, it is not a good idea to put a short circuit on the output of a signal source, though it may not matter much for low-level signals.

Additionally, a resistor in series with the DUT can serve as a sense resistor when it is impractical to put scope probes across the DUT. Again taking an ultrasonic piezo transducer as an example, current through the transducer depends on its impedance, which in turn depends on the driving frequency. The voltage drop across a sense resistor in series with the transducer will indicate the amount of current through the transducer. At resonance, the impedance of the transducer is minimum and maximum current flows. This same current causes a voltage drop in the sense resistor, and the maximum current (at resonance) will show the maximum voltage.

You Might Also Like

Filed Under: FAQ, Featured, Test and Measurement Tips Tagged With: FAQ, panasonicindustrial

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • i need an embedded c program that will read a 12 bit memory address from the io pins and output the data to pins from the memory in a 8051 mcontroller
  • Power on delay circuit
  • General purpose CMOS Op Amp and PMOS & NMOS from LTSpice library
  • Power switches to replace Mechanical Relay in the HV pulse tester setup
  • Single Ended- Differential Ended LNA comparison

RSS Current Electro-Tech-Online.com Discussions

  • Guitar electronics project
  • Arduino picking up button presses on power up of the board
  • 12v battery, 18v magic
  • Behringer MX 1602 mixer - reading block diagram
  • how to work on pcbs that are thick
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy