• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

A path to compact, robust sources for ultrashort laser pulses

June 4, 2013 By EurekAlert

The research groups of (l-r) Dr. Robert Huber, Ludwig-Maximilians-Universitaet, Munich, and Dr. Christian Jirauschek, Technische Universitaet Muenchen, have pointed the way toward compact, robust sources for applications requiring ultrashort laser pulses.Laser with ‘rainbow’ buffer could make new applications practical


Laser researchers in Munich are challenging a basic assumption of engineering: “You can’t have it all.” They have shown that for certain kinds of laser applications in biomedical imaging, material processing, and communications, a new approach could deliver the desired capabilities with no problematic tradeoffs: in compact, inexpensive, efficient and long-lived devices that produce ultrashort, high-energy light pulses. This research is a close collaboration between members of the Electrical Engineering and Information Technology Department at the Technische Universitaet Muenchen (TUM) and the Physics Department of LMU Munich.


Their latest paper, published in Nature Communications, describes experiments showing that cheap, robust semiconductor lasers can produce high-energy light pulses as short as 60 picoseconds (trillionths of a second) without the drawbacks of previous approaches in terms of power consumption and device size. At the same time it presents theoretical results predicting that this technique will break the next barrier for such lasers: subpicosecond pulses.


“Our models and simulations actually let us identify changes in the experimental setup that could yield a further thousand-fold improvement in performance,” says Dr. Christian Jirauschek of TUM, “potentially producing pulses shorter than 30 femtoseconds.”


Reshaping continuous wave output to short intense pulses


The Munich researchers’ approach employs a relatively new kind of laser in a novel configuration. Dr. Robert Huber, leader of the LMU group, is co-inventor of this device, the Fourier domain mode-locked (FDML) laser. Rather than emitting light centered on one highly specific “color,” the FDML laser rapidly and repeatedly sweeps through a range of wavelengths. The idea behind the experiment now is to reshape the continuous wave output from the FDML laser to short intense pulses.


“The advantage of this experimental configuration,” Huber explains, “comes from storing the entire energy of each FDML laser sweep directly as a light field – spread out like colors of an infrared rainbow – in a kilometer-long optical fiber inside the laser resonator.” This is more efficient than storing the energy in the semiconductor structure of the laser source. The different wavelength components travel at different speeds and enter a second optical fiber, outside the laser, at different times. This second fiber is laid out so that the different speeds exactly compensate for the different entry times: All colors exit the second fiber at the same time, forming a short laser pulse. This is the key to preserving high output energy even while shortening the pulse time – without increasing power consumption or requiring the use of a larger device.


Source: https://www.eurekalert.org/pub_releases/2013-06/tum-apt060313.php

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • problem identifying pin purpose on PMA5-83-2WC+ amplifier
  • Voltage Regulator Sizing Question
  • Genetic algorithm code in matlab for cost optimization
  • SDR as wideband spectrum analyzer
  • GanFet power switch starts burning after 20 sec

RSS Current Electro-Tech-Online.com Discussions

  • Can I use this charger in every country?
  • using a RTC in SF basic
  • An Update On Tarrifs
  • Wish to buy Battery, Charger and Buck converter for 12V , 2A router
  • problem identifying pin purpose on PMA5-83-2WC+ amplifier
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy