MIT engineers say they developed tiny batteries that could enable the deployment of cell-sized autonomous robots for drug delivery in the human body. The battery measures 0.1. mm long and 0.002 mm thick, coming at roughly the thickness of a human hair. It can capture oxygen from air and use it to oxidize zinc. According…
Battery Power Tips
IC monitors battery current every eight microseconds
NXP Semiconductors has announced the MC33777, a battery junction box integrated circuit (IC) that combines sense, think, and act capabilities for battery management systems. The MC33777 integrates pack-level functions into a single device, which differs from conventional solutions that use multiple discrete components, external actuators, and processing support. The MC33777 IC monitors battery current and…
What are the main challenges in developing solid-state batteries for EVs?
Samsung recently announced the development of a groundbreaking solid-state electric vehicle (EV) battery (Figure 1), promising a 600-mile range, 9-minute rapid charging, and a 20-year lifespan. In contrast, EVs with conventional lithium-ion (Li-ion) batteries typically offer a 250 to 350-mile range, 25 to 30-minute rapid charging, and an 8 to 15-year lifespan. Although many major…
How much could solid-state batteries improve EV range?
First-generation solid-state batteries are poised to boost the driving range of electric vehicles (EVs) by 50% to 80%. Solid-state batteries could extend this range even further, with some automotive manufacturers ambitiously targeting 900 to 1,000 miles per charge. This article reviews how solid-state technology increases EV battery capacity and range, discussing lighter and more energy-dense…
What are solid-state batteries, and how do they differ from current EV batteries?
Lithium-ion (Li-ion) battery traction packs power most electric vehicles (EVs) on the road today. These batteries enable electric motors to efficiently generate the high torque required for rapid acceleration and consistent speeds. Although Li-ion batteries offer high energy density and a relatively long lifespan, many automotive companies are actively researching and developing solid-state battery technology.…
Beyond SDVs: how AI optimizes electric vehicles
Many automotive manufacturers classify new cars and trucks as software-defined vehicles (SDVs). As SDVs by design, electric vehicles (EVs) optimize vital systems and functions with sophisticated artificial intelligence (AI) and machine learning (ML) capabilities. This article discusses AI’s crucial role in EVs, from smart charging and advanced driver assistance systems (ADAS) to predictive maintenance and…
Solid-state batteries could change how we use power devices
With so many batteries, from cell phones to EVs, that are dependent on lithium, an alternative is always welcome. Solid-state chemistries could significantly reduce the risk of overheating and fire. We’ve become dependent on lithium-ion (Li-ion) batteries to power cell phones, EVs, and everything in between. Today’s Li-ion batteries can produce low and high voltages.…
Electrode material improves flowless zinc-bromine batteries
The flawless zinc-bromine battery (FLZBB) is a promising alternative to flammable lithium-ion batteries because it uses non-flammable electrolytes. However, it suffers from self-discharge due to the crossover of active materials, generated at the positive graphite felt (GF) electrode, to the negative electrode, significantly affecting performance. Now, researchers have developed a novel nitrogen-doped mesoporous carbon-coated GF…
5A fuses protect Li-ion batteries from overcharging
Littelfuse, Inc. announced the extension of its ITV2718 surface-mountable Li-ion battery protector series. These fuses safeguard Li-ion battery packs against overcurrent and overcharging (overvoltage) conditions—even when fast charging. The latest addition, the ITV2718, provides a five-amp, three-terminal fuse in a 2.7 x 1.8 mm footprint. The innovative design utilizes an embedded fuse and heater element combination…
What is the EV battery supply chain?
The electric vehicle (EV) battery supply chain is vast and complex, spanning mining and processing to assembly and end-of-life management. This article reviews the supply chain’s four primary stages: upstream, midstream, downstream, and recycling or repurposing. It also highlights major supply chain challenges and explores potential solutions to improve resiliency, efficiency, and sustainability. Defining the…