• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

A Single Magnetic Skyrmion Detected At Room Temperature For The First Time

February 14, 2018 By Bob Yirka , Phys.org

A team of researchers from CNRS, Thales and the Université Paris-Saclay, all in France has for the first time detected a single skyrmion at room temperature. In their paper published in the journal Nature Nanotechnology, the group describes their efforts, what they achieved and future avenues of research efforts.

Five years ago, a team at the University of Hamburg demonstrated for the first time that skyrmions could be used to store and erase data held on magnetic media. But to do that, the media had to be at a very cold temperature. In this new effort, the researchers in France have shown one of the important parts of memory storage—reading one unit—is possible at room temperature.

Skyrmions are a type of quasiparticle that exists on the surface of a magnetic material. They have been described as spinning magnetic swirls, and were first theorized more than 60 years ago by physicist Tony Skyrme—hence the name. Skyrmions can also move across a surface, like a mouse under a carpet, which has raised the possibility of using them in “racetrack memory” storage devices—they are particularly attractive because they are 10 times smaller than the spaces now used in modern electronic devices. But for practical applications, they need to be writable, readable and erasable at room temperature—this new research effort moves closer to achieving the second.

To ensure the accuracy of their results, the team used both concomitant electrical measurement and magnetic imaging using electrical pulses and detecting their presence by measuring their Hall resistivity. Part of the work was ensuring that a skyrmion created in a material could be isolated—to that end, they used electron-beam lithography to create a strip of skyrmions. That approach allowed for modifying the number of skyrmions created, their width and intensity, making the task of reading one less difficult.

The team notes that their achievement is just one small step on the path toward skyrmion-based memory devices, but suggest their work offers hope of an actual device being developed in 10 to 15 years.

Filed Under: Components

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • 3.7v to 5v dc to dc boost converter
  • Thyristor - Reverse Diodes and Reverse Blocking
  • Calculation of FET switch ON time for Boost PFC?
  • Inverting Preamp schematic
  • Suitable Stackup required for a high current carrying PCB

RSS Current Electro-Tech-Online.com Discussions

  • looking for resistor for my treadmill.
  • alternate of 80386/486 microprocessor
  • Right channel distortion on vintage fisher rs-2010
  • Basic questions about MOSFETS, Gate Drivers and Diodes
  • Neon Transformers for sale

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy