• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Autonomous Vehicles: Driving Innovation In PCB Manufacturing

August 9, 2017 By Shavi Spinzi, Industry Marketing Director, PCB Division, Orbotech

The automotive industry has made great strides in its efforts to develop and commercialize semi-autonomous and fully autonomous vehicles. With continued innovation in advanced driver assistance systems (ADAS) and accelerating development of 5G network infrastructure, mainstream adoption of driverless cars is approaching ever faster on the horizon. Provided the necessary government safety regulations are in place, we may see fully autonomous vehicles on public roadways by 2021.

Phase one of this development has centered on the intra-vehicle connectivity needed to centralize and process incoming data from increasing numbers of camera, radar, and LiDAR sensors deployed throughout the vehicle. In subsequent development phases, on-board sensor data will be merged with incoming information from surrounding vehicles and infrastructure, comprising a mesh sensor network that enables “smarter” automatic decision making for improved adaptability to fast-changing driving conditions.

In the meantime, road trials for semi-autonomous vehicles are ongoing, with early prototypes shuttled in and out of R&D labs as the technology is refined. These prototypes are immediately recognizable by the bulky electronic systems mounted on their rooftops and/or squeezed into their trunks, housing the additional sensors, networking, and processing units needed for semi-autonomous operation.  

In order for these vehicles to achieve production readiness, these bulky electronic systems will ultimately need to be integrated within the vehicle interior, for reasons that extend beyond aesthetics and available trunk space. In-vehicle integration ensures that the electronics can be adequately climate controlled, protected against harsh weather, and humidity. Historically, the vehicle dashboard has housed the electronics hub, which is likely to continue.

Regardless of how these electronics are integrated, one certainty is the size of PCBs utilized in the connectivity architecture will need to shrink dramatically; from the individual camera, radar, and LiDAR sensors, to the electronic control unit (ECU).

Shifting Gears

To date, automotive system designers have relied on conventional multi-layer PCBs for mechanical and electrical connectivity between components. In recent years, they’ve seen the number of board layers in the ECU grow from six to as many as twelve layers, adding significant design complexity. To meet the system size and integration challenges of sensor-intensive semi-autonomous and autonomous vehicles, system designers will have to eschew multi-layer boards in favor of high-density interconnects (HDIs). Commonly used today in smartphones, smartwatches, and other compact digital devices, HDIs enable more functions per unit area than multi-layer boards by leveraging laser-cut microvia technology, finer lines, and thinner materials.

Having said that, consumer device manufacturers aren’t subject to the stringent safety standards and arduous qualification processes inherent to the automotive industry, where the adoption of HDI technology will therefore be markedly slower. Incumbent automotive PCB suppliers have just begun to build their HDI manufacturing infrastructure, and may need at least two years to qualify their HDIs for use in production vehicles. In the early adoption stages, these suppliers may grapple with yield issues that negatively impact the bottom line.

Precision Handling

Automotive PCB suppliers can accelerate their time to market and time to profitability with HDIs by leveraging advanced laser direct imaging (DI) and automated optical inspection (AOI) systems. These solutions, applied in concert with Industry 4.0 best practices, enable suppliers to increase their manufacturing precision and quality, while improving their production throughput and yield. The benefits of these manufacturing techniques will only compound as more sensors are integrated within next-generation vehicles.

Automotive PCB suppliers can leverage the vast experience of laser DI system suppliers, who can help integrate this capability into their process. DI systems can ensure precision line uniformity, high registration accuracy, and optimal quality even at high production speeds, with the ability to quickly identify and measure panel deformities, instability, and make the necessary adjustments. Advanced automotive applications will require a mix of large HDI boards for connectivity and sensor processing, for which imaging depth of focus is very important to ensure homogenous quality. These applications will also require a mix of small boards at the sensor level, for which high registration capabilities will be needed.

Leveraging advanced AOI systems, automotive PCB suppliers can quickly identify HDI defects, recurring panel defect patterns, and alert production operators in real time to halt the line and/or troubleshoot upstream processes. The sub-micron inspection capabilities enabled by today’s sophisticated AOI systems are increasingly valuable as HDI form factors continue to shrink, and are ideally suited to help meet the stringent quality and reliability requirements of government automotive regulations. 

The combination of laser DI and AOI capabilities is particularly beneficial for improving yield. With enhanced visibility into panel and product anomalies, automotive PCB manufacturers can take the necessary steps to refine their production processes, while minimizing wasteful and expensive material scrapping.

With the increased need for safety electronics units in semi- and fully autonomous cars, traceability of components throughout the manufacturing process becomes mandatory. When a faulty card is identified, supply chain traceability enables a manufacturer to confirm the specific process that yielded the failure. Each PCB must therefore have a unique ID that can be traced back to the specific manufacturer, along with the process of manufacturing and handling.

This adheres to Industry 4.0 best practices that are already implemented at leading PCB fabricators, where traceability solutions are integrated within the DI, AOI, and other systems to allow automatic recording of all manufacturing stages, with clear visibility and data sharing for OEMS across the supply chain. The traceability itself is serving as a source for data analyses, enabling faster New Product Introductions (NPIs) as process are refined.

Figure 1: Autonomous vehicle technologies.

The Road Ahead

There’s no longer a question “if” autonomous cars will achieve mainstream commercial viability, but when. Taking into account the myriad passenger safety and transportation efficiency benefits, autonomous vehicles hold the promise to fundamentally transform land-based travel, shipping, and commerce for future generations.

In the near term, automotive system designers will focus increased attention on optimizing system form factors and integration, ensuring that additional sensors and ECUs required for semi-autonomous and autonomous vehicles can be readily incorporated within a sleek end design. Automotive PCB suppliers will play a crucial role in this innovation. The precision manufacturing and inspection capabilities enabled with advanced laser DI and AOI systems will ultimately allow these suppliers to mirror the progress achieved in the consumer device domain with HDI technology, while ramping up process efficiencies, improving yield, and driving greater profitability. The combination of new production tools with comprehensive data management and traceability will enable a fast ramp up to a new era of innovation in the automotive industry.

DesignFast Banner version: cf2e0d6b

Filed Under: Automotive/Transportation

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

April 2022 Special Edition: Internet of Things Handbook

How to turn off a smart meter the hard way Potential cyber attacks have a lot of people worried thanks to the recent conflict in Ukraine. So it might be appropriate to review what happened when cybersecurity fi rm FireEye’s Mandiant team demonstrated how to infiltrate the network of a North American utility. During this…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How did they made the old manuals or magazines sketches?
  • Bandpass filter why we are cascading HPF+LPF why not LPF +HPF,both are LTI systems
  • MAX5389 resetting by noise
  • Verilog/SV: Using an array as a set of individual registers and not RAM
  • the mysterious emitter follower

RSS Current Electro-Tech-Online.com Discussions

  • MOSFET gets hot and burns
  • LCD display on PICDEM 2 Plus board
  • Relaxation oscillator with neon or...
  • software PWM
  • Positive and negative sides of voltage source

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy