• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

DARPA Program Aims To Extend Lifetime Of Quantum Systems

January 19, 2018 By DARPA

Whether it is excited electrons emitting photons in a lightbulb or the vibrational frequency of atoms in an atomic clock, quantum phenomena are simultaneously fundamental aspects of nature and the basis of current state-of-the-art and future technologies. This is particularly the case as sensor and device performance continue to improve and approach their fundamental limits. It is not lost on DARPA that controlling quantum phenomena is an increasingly important challenge in the realm of national defense. High-precision atomic clocks can enable timekeeping for navigation and communications with GPS-like performance even in GPS-denied environments. And computing based on quantum bits, or qubits, which can represent a one, a zero, or a coherent linear combination of one and zero, could open routes to new kinds of computation. But there’s a hitch. The performance and reliability of quantum sensors and devices is dependent on the length of time the underlying quantum states can remain coherent. If you wait long enough, interactions with the environment will make the state behave like a conventional classical system. In many cases, this time is significantly short. DARPA, with an eye on practical quantum devices and sensors in compact sizes, has set its sight on demonstrating protocols that can dramatically extend the longevity of the coherence of quantum systems.

DARPA’s Defense Sciences Office (DSO) today announced a new fundamental research program, Driven and Nonequilibrium Quantum Systems (DRINQS) to investigate a recent paradigm shift in quantum research, which maintains that periodically driving a system out of equilibrium may stabilize its coherence.

“A simple illustration of the concept of driving something out of equilibrium to increase its stability is the well-known trick of making an inverted broom stand up on the palm of your hand or on one of your fingertips,” said Ale Lukaszew, DARPA program manager. “If you hold your hand still, the broom is unstable and will fall over quickly. But if you drive the broom out of equilibrium by moving your hand around periodically, you can make the broom very stable, so it remains upright indefinitely.”

States of quantum coherence are relatively short-lived because quantum particles are extremely sensitive to their surroundings and quickly become unstable, losing their predictable and readily measurable quantum properties due to even the slightest thermal variation or other disturbance in the environment.

“Atoms and subatomic particles in a quantum state do not always get along well with other particles and currently need special isolated environments where no thermal, electromagnetic, or other disturbance will cause them to lose their coherence,” Lukaszew said. “That’s why the world’s best atomic clocks for precision timing, which DARPA is pioneering in other programs, require special laboratory environments for isolating individual atoms from each other. This involves slowing atoms down by cooling them to near absolute zero temperature and creating with lasers a lattice structure in which the chilled atoms can rest quietly, unperturbed by their neighbors like eggs in a carton.”

“If we can introduce a periodic drive to enable particles to be packaged close together in small spaces at room temperature, while still retaining quantum coherence, we may be able to reproduce the performance of the best sensors, such as atomic clocks and magnetometers, in small and robust devices for military use,” Lukaszew said.

The new program will build collaborative teams of theoreticians and experimentalists to address novel approaches for driving quantum systems made up of large numbers of particles. The teams will be tasked to develop novel protocols for stabilizing coherence in a driven system and demonstrate proof-of-principle concepts that achieve at least 10-fold, and possibly 100-fold, improvement over the standard limits of quantum coherence.

“One exciting potential application for extremely precise atomic-based time measurements is measuring gravitational fields, which could be very useful in tunnel and cave detection,” Lukaszew said. “In principle, existing atomic-clocks can keep time precisely enough to measure gravitational field differences over the distance of a few feet, but it could take weeks to process the measurement. If we can engineer a system that doesn’t lose its coherence as fast and can be re-tuned very quickly, we could potentially make those same measurements in half an hour.”

A webinar Proposers Day outlining the objectives of the Driven and Nonequilibrium Quantum Systems program in more technical detail will be held on February 1, 2018. A special notice with registration information is available here: https://go.usa.gov/xnv6V. Pre-registration is required. A Broad Agency Announcement (BAA) solicitation is anticipated to be available prior to the webinar and will be posted on the DARPA opportunities page of the FedBizOpps website: https://go.usa.gov/xnpQU/

Filed Under: Components

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Electrical Lenght of Microstrip Transmission Lines
  • Op amp non inverting amplifier not working
  • Making a ducted soldering fan?
  • Characterization values of a MOSFET in PDK
  • USBASP Programmer Mod

RSS Current Electro-Tech-Online.com Discussions

  • Need a ducted soldering fan for solder smoke extraction
  • How to search component to replace my burn RF inductor?
  • Question about ultrasonic mist maker
  • Someone please explain how this BMS board is supposed to work?
  • bluetooth jammer

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy