• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Electric Cars Can Become More Eco-Friendly Through Life Cycle Assessment

October 12, 2017 By Chalmers University of Technology

Electric cars have been criticised in recent times due to their energy-intensive manufacturing processes and because they are currently charged using electricity which is partly produced from fossil fuels.

Anders Nordelöf, a researcher in environmental systems analysis at Chalmers University of Technology, is seeking a more future-oriented approach to the electric car. He thinks it is necessary to focus on solving the problems that arise in the transition to the new technology.

“We need to take the environmental problems with electric cars seriously, but we mustn’t get caught up in the situation as it now stands. It’s time to give up discussing whether the electric cars of today are good or bad, and start working together step-by-step to make them as good as possible from an environmental perspective,” he said.

“Comparing electric cars with diesel or petrol driven vehicles is relevant, but not the most important issue – nor is it what will solve the problems in the long term. We know that fossil fuels have to be phased out, and the automotive industry has decided upon electrification. The most important thing then is to find the best way forward.”

Nordelöf points out that the great strength of the electric car is in its potential. In a recent thesis he gives clear advice to industry, policy-makers and authorities to work together to develop electric cars by making their production as fossil-free as possible.

“If we charge the car from a clean source of electricity and combine this with the lowest possible carbon dioxide emissions during production, then the electric car will be revolutionary. But we can’t expect to find a ready-made solution immediately,” he said.

He is providing key pieces of the puzzle to help progress the development of electric cars, and shows in his thesis how life cycle assessment, LCA, can be used to minimise their environmental impact in the long term.

The thesis contains details of specific tools, methodology recommendations and new models for collecting LCA data, which are aimed at anyone working on the development of electric-powered vehicles using life cycle assessment.

“The models fill important data gaps and allow relevant LCA studies to be carried out on electric powertrains. These studies can then be applied to many different types of vehicles. I’ve also compared the overall environmental impact from three different electric motors, and can therefore provide basic advice on how to design electric motors to produce as little environmental impact as possible,” he said.

Nordelöf provides some technology advice for the automotive industry based on his research. He stresses that energy efficiency and greater production of electricity from renewables is the key to reducing the environmental impact of electric cars in the operational phase, globally.

“But it’s also important to realise that the manufacture of components will make up an ever greater proportion of the electric car’s environmental impact the further our developments progress, especially if you take a broader perspective than just greenhouse gases. There are major environmental challenges in the extraction of metals, placing many requirements on the supply chain,” he said.

Nordelöf’s study also contains a summary of what previous LCA studies had to say about the environmental impact of electric cars. He points out that the results are contradictory and disparate, while showing that this is mainly due to shortcomings in the design and reporting of the studies – since the choice of methodology, purpose and target group are not clearly presented.

“More rigorous reporting is required in the research field so as not to increase the confusion that already exists around the environmental impact of electric cars,” he said.

You Might Also Like

Filed Under: Power Electronic Tips

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Core loss in output inductor of 500W Two Transistor forward?
  • Question LCD LED IPS display
  • Colpitts oscillator
  • BiSS-C Behavior Without Slave (dsPIC33AK128MC106 + iC-MB4)
  • GanFet power switch starts burning after 20 sec

RSS Current Electro-Tech-Online.com Discussions

  • An Update On Tarrifs
  • Component tracks and pins are empty in proteus 8 (void)
  • Need Help Figuring Out the Schematics Of Circuit Board
  • Wish to buy Battery, Charger and Buck converter for 12V , 2A router
  • applying solder paste from a jar
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy