• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Explained: Femtoseconds and attoseconds

September 17, 2012 By Massachusetts Institute of Technology

Back in the first half of the 20th century, when MIT’s famed Harold “Doc” Edgerton was perfecting his system for capturing fast-moving events on film, the ability to observe changes unfolding at a scale of microseconds — millionths of a second — was considered a remarkable achievement. This led to now-famous images such as one of a bullet piercing an apple, captured in midflight.

Nowadays, microsecond-resolution imagery is almost ho-hum. The cutting edge of research passed through nanoseconds (billionths of a second) and picoseconds (trillionths) in the 1970s and 1980s. Today, researchers can easily reach into the realm of femtoseconds — quadrillionths (or millionths of a billionth) of a second, the timescale of motions within molecules.

Femtosecond laser research led to the development, in 2000, of a system that revolutionized the measurement of optical frequencies and enabled optical clocks. Continuing the progress, today’s top-shelf technologies are beginning to make it possible to observe events that last less than 100 attoseconds, or quintillionths of a second.

Those prefixes — micro, nano, pico, femto and atto — are part of an internationally agreed-upon system called SI units (from the French Système International d’Unités, or International System of Units). The system was officially adopted in 1960, and has been updated periodically, most recently in 1991. It encompasses a total of 20 prefixes, 10 of them for decimal amounts, and 10 more for large multiples of the basic units (mega, giga, tera and so on).

The basic technological innovation that made it possible to observe changes at such tiny timescales was something called a pulsed laser, explains MIT adjunct professor of electrical engineering Franz Kaertner, who specializes in such devices. The technology was pioneered by Erich Ippen and Herman Haus in MIT’s Research Laboratory of Electronics. “Erich and Chuck Shank, at that time working at Bell Laboratories, were the first to make femtosecond pulses, which were very difficult to create back then and are routine today,” Kaertner says. Haus developed the underlying theory of how those systems actually worked.

The ability to observe events on such timescales is important for basic physics — to understand how atoms move within molecules — as well as for engineering semiconductor devices, and for understanding basic biological processes at the molecular level.

But physicists and engineers are interested in pushing these limits ever further. To understand the movements of electrons, and eventually those of subatomic particles, requires attaining the attosecond and ultimately zeptosecond (sextillionths of a second) range, Kaertner says. Achieving that requires pushing technology to produce pulses using higher-wavelength sources, and also producing pulses that encompass a wider range of frequencies — a more broadband source.

So far, Kaertner says, “the shortest pulse people have measured is 80 attoseconds.” But various groups are working to push the limits even further, he says, using several different methods, including large-scale electron accelerators such as the Stanford Linear Accelerator.

High-energy X-ray pulses with femtosecond duration could make it possible to obtain detailed images, and ultimately movies, of the dynamics of complex protein molecules, Kaertner says — something that can’t be done with existing techniques, and could be of great interest for biomedical research. But high-energy X-ray pulses that can probe these complex structures also destroy them in the process, so the pulse has to be so quick that the image can be obtained before the pieces fly apart.

“If the pulse is short enough, all the X-rays diffract from the protein before it is destroyed,” Kaertner says. This is called diffraction before destruction. “It’s a hot field at the moment,” he adds.

Beyond basic research, femtosecond lasers have many practical applications as well. The most common are in the micromachining of materials and in Lasik eye surgery — which was enabled by the development of robust femtosecond pulsed lasers. These extremely short pulses made it possible to deposit high energy to destroy material such as tissue on a tiny spatial scale, without having enough time for the energy to diffuse and damage surrounding tissue, Kaertner says.

So, just how short is a femtosecond? One way to think of it, Kaertner says, is in terms of how far light can move in a given amount of time. Light travels about 300,000 kilometers (or 186,000 miles) in one second. That means it goes about 30 centimeters — about one foot — in one nanosecond. In one femtosecond, light travels just 300 nanometers — about the size of the biggest particle that can pass through a HEPA filter, and just slightly larger than the smallest bacteria.

Another way of thinking about the length of a femtosecond is this: One femtosecond is to one second as one second is to about 32 million years.

As a rough indicator of how relevant these terms are becoming, a recent Google search showed more than two million hits for the term femtosecond, but only about a tenth that many for attosecond, and a mere 16,000 or so for the next official term, zeptosecond — most of which were simply dictionary definitions, as opposed to actual uses of the term. (The final term in this procession, yoctosecond, produced a similar number.)

But as technology continues to march forward, there may be more talk about zeptoseconds and yoctoseconds — or, going in the other direction, things such as zettabytes of data or yottawatts of power — coming up in our future.

You Might Also Like

Filed Under: Robotics/Drones

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Discrete IrDA receiver circuit
  • No Output Voltage from Voltage Doubler Circuit in Ansys Nexxim (Harmonic Balance Simulation)
  • ISL8117 buck converter blowing up
  • I²C Ground Isolation with Series Battery Cells (ULIN13-01 + PIC18LF4520)
  • Mean offset increase in post-layout simulation of clocked comparator

RSS Current Electro-Tech-Online.com Discussions

  • Kawai KDP 80 Electronic Piano Dead
  • using a RTC in SF basic
  • Saga 1400sv vinyl cutter motherboard issue
  • Unknown smd. Any ideas?
  • Display TFT ST7789 (OshonSoft Basic).
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy