• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Graphene And Terahertz Waves Could Lead The Way To Future Communication

June 28, 2017 By Phys.org

By utilizing terahertz waves in electronics, future data traffic can get a big boost forward. So far, the terahertz (THz) frequency has not been optimally applied to data transmission, but by using graphene, researchers at Chalmers University of Technology have come one step closer to a possible paradigm shift for the electronic industry.

Over 60 young researchers from all over the world will learn more about this and other topics as they gather in outside of Gothenburg, Sweden, to participate in this week’s summer school Graphene Study, arranged by Graphene Flagship.

It is the EU’s largest ever research initiative, the Graphene Flagship, coordinated by Chalmers, who organises the school this week, 25-30 June 2017. This year it is held in Sweden with focus on electronic applications of the two-dimensional material with the extraordinary electrical, optical, mechanical and thermal properties that make it a more efficient choice than silicon in electronic applications. Andrei Vorobiev is a researcher at the Department of Micro Technology and Nanoscience at Chalmers as well as one of the many leading experts giving lectures at Graphene Study and he explains why graphene is suitable for developing devices operating in the THz range:

“One of the graphene’s special features is that the electrons move much faster than in most semiconductors used today. Thanks to this we can access the high frequencies (100-1000 times higher than gigahertz) that constitutes the terahertz range. Data communication then has the potential of becoming up to ten times faster and can transmit much larger amounts of data than is currently possible”, says Andrei Vorobiev, senior researcher at Chalmers University of Technology.

Researchers at Chalmers are the first to have shown that graphene based transistor devices could receive and convert terahertz waves, a wavelength located between microwaves and infrared light, and the results were published in the journal IEEE Transactions on Microwave Theory and Techniques. One example of these devices is a 200-GHz subharmonic resistive mixer based on a CVD graphene transistor integrated on silicon that could be used in high-speed wireless communication links.

Another example, taking advantage of graphene’s unique combination of flexibility and high carrier velocity, is a power detector based on a graphene transistor integrated on flexible polymer substrates. Interesting applications for such a power detector include wearable THz sensors for healthcare and flexible THz detector arrays for high resolution interferometric imaging to be used in biomedical and security imaging, remote process control, material inspection and profiling and packaging inspection.

“Analysis show that flexible imaging detector arrays is an area where THz applications of graphene has a very high impact potential. One example of where this could be used is in the security scanning at airports. Because the graphene-based terahertz scanner is bendable you’ll get a much better resolution and can retrieve more information than if the scanner’s surface is flat,” says Vorobiev.

But despite the progress, much work remains before the final electronic products reach the market. Andrei Vorobiev and his colleagues are now working to replace the silicon base on which the graphene is mounted, which limits the performance of the graphene, with other two-dimensional materials which, on the contrary, can further enhance the effect. And Vorobiev hopes that he will be able to inspire the students participating in Graphene Study to reach new scientific breakthroughs.

“In the last fifty years, all electronic development has followed Moore’s law, which says that every year more and more functions will being applied on ever smaller surfaces. Now it seems that we have reached the physical limit of how small the electronic circuits can become and we need to find another principle for development. New materials can be one solution and research on graphene is showing positive results. Working with graphene-related research is about breaking new ground which involves many difficult challenges, but eventually our work can revolutionise the future of communication and that’s what makes it so exciting,” says Andrei Vorobiev, senior researcher at Chalmers University of Technology.

Filed Under: Components

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Constraining a combo path (Synopsys DC)
  • tetramax fault list
  • Tessent MBIST for memories with dedicated test clock
  • SDR with external LO input
  • Question about set_timing_derate

RSS Current Electro-Tech-Online.com Discussions

  • Question about ultrasonic mist maker
  • RF modules which can handle high number of bytes per second
  • Disabled son needs advice please
  • DIY bluetooth speaker
  • Pet Microchip scan

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy