• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Infrared Camera System to View Inside Tokamak Magnetic Fusion Energy Chamber

November 4, 2014 By Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory designer Kevin Morris was part of a research team that developed an infrared camera system to view General Atomic's DIII-D Tokamak from the inside. Image credit: Julie Russell/LLNLGeneral Atomics’ DIII-D Tokamak has been a critical part of the nation’s magnetic fusion energy research since it was built in the 1980s.

Over the years, wear and tear has taken its toll. However, it was impossible for researchers to see inside the San Diego company’s highly complicated machine to assess damage – until now.

Lawrence Livermore National Laboratory researchers, in collaboration with General Atomics and the University of Arizona, have developed an infrared and visible camera viewing system that’s able to produce wide-angle, tangential views of full poloidal (north-south direction of the magnetic field) cross-sections inside the tokamak.

The camera’s images provide researchers with data about the interior conditions of the DIII-D, which was built under contract for the Department of Energy. DOE provides funding for its operation.

“We wanted to look inside the tokamak’s chamber to see where things were heating up on the walls,” said Kevin Morris, a designer with LLNL’s National Security Engineer Division, who was part of the research team that developed the camera system. “There are a lot of critical areas that are heated by the plasma, and researchers want to understand them better.”

Tokamaks are devices that use a magnetic field to confine plasma in the shape of a torus, which looks like doughnut. The plasma is produced by heating a mixture of deuterium and tritium – two isotopes of hydrogen – to temperatures greater than 150 million degrees Celsius.

In order to keep the hot electrically charged plasma particles away from the machine’s walls, strong magnetic field lines cause them to move around the torus in a helical shape.

A rendering of the inside of the DIII-D Tokamak. Image credit: LLNL“The plasma can be unstable,” Morris said. “This can result in heating of the wall in new places.”

The camera system consists of a commercially available infrared camera, a fast visible camera and an optical system designed by a collaboration of physicists, engineers, optical designers and mechanical designers.

Their design will be used as a prototype for a set of larger cameras that will be built for the International Thermonuclear Experimental Reactor project. The international nuclear fusion megaproject seeks to build the world’s largest experimental tokamak in France.

DIII-D’s camera system, which looks like a periscope, has three polished stainless steel mirrors in a vacuum that view the tokamak through an aperture in the first mirror. It views the machine’s lower divertor, upper divertor, inner wall and outer wall in infrared and visible light.

Experiments with the infrared camera have produced results including surface temperatures measurements, surface heat flux profiles and heat distribution along the wall, both in latitude and longitude.

The research team’s findings were published in the American Institute of Physics Review of Scientific Instruments.

Team members include LLNL’s Lynn Seppala, Dean Urone, Kevin Morris, Shannon Ayers and Bill Meyer; General Atomics: Charles Lasnier, Steve Allen and Ron Ellis.

You Might Also Like

Filed Under: Power Electronic Tips

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

zonal architecture

Addressing zonal architecture challenges in the automotive industry

zonal architecture

Addressing zonal architecture challenges in the automotive industry

A2L refrigerants drive thermal drift concerns in HVAC systems

Why outdoor charging demands specialized battery connectors

How Li-ion batteries are powering the shift in off-highway equipment

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Current Mode Half Bridge converter proof
  • IGBTs without negative gate drive
  • crystal oscillator within transmitter -How does it work?
  • Dynacord enter protect
  • Snubbers in Flyback Converters

RSS Current Electro-Tech-Online.com Discussions

  • turbo jet fan - feedback appreciated.
  • SiC FET disadvantages
  • Current sources in parallel...
  • Need Help with TDA7294 Stereo Amplifier
  • Comparator hard to find without digikey
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy