• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • Covid-19
    • DesignFast
    • Ebooks / Tech Tips
    • EE Forums
      • EDABoard.com
      • Electro-Tech-Online.com
    • FAQs
    • 2020 LEAP Awards
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars
    • White Papers
  • Videos
    • Teardown Videos
  • Lee’s Teardowns
    • Teardown Videos
  • Learning Center
  • 5G
  • Women in Engineering

Light-modified Material Modifies Light

July 22, 2016 By The Agency for Science, Technology and Research (A*STAR)

A material whose optical properties can be modified on a small scale by laser light promises a wide range of applications.

Properties of small areas of a versatile optical film can be tweaked by applying ultrashort pulses of laser light, researchers at Agency for Science, Technology and Research (A*STAR), Singapore, show [1]. This tunability makes the material suitable for various light-based applications, from lenses to holograms.

When the shutter button on a camera is depressed, it focuses by electrically adjusting the positions of the constituent parts of the lens. Similarly, the parameters of optical components in many devices and scientific instruments are adjusted by moving their parts, or by stretching or heating them. Being able to use light to adjust optical components would offer many advantages, including fast response and easy integration into small and robust systems.

Now, such an optically adjustable system has been developed by Qian Wang of the A*STAR Institute of Materials Research and Engineering and co-workers, along with collaborators at the University of Southampton, UK, and the Nanyang Technological University, Singapore.

The team studied a material widely used in CD and DVD disks — chalcogenide glass. In rewritable CD and DVD data-storage devices, microsecond or nanosecond (10−9 second) laser pulses are used to switch the medium between two states — crystalline and disordered. In contrast, Wang and her team used a tightly controlled series of much shorter femtosecond (10−15 second) optical pulses to set the glass into incremental states between completely crystalline and completely disordered. By scanning the focused laser beam across the glass film, they could modify regions as small as about 0.6 micrometers (see image).

“This technique allows us to build optical devices with smoothly varying properties across the surface, to erase them and then to rewrite a different structure, all on the same piece of optical canvas,” notes team member, Edward Rogers, of the University of Southampton. “It can even be used to write complex structures like lenses, diffraction gratings, holograms and advanced resonant structures known as metamaterials, directly into a phase-change chalcogenide glass film.”

The researchers used their system to make various optical components, including a hologram that had eight levels of gray shading.

Another advantage of the device is its compact size. “Compared to conventional bulk optical components, our optical devices are flat and much smaller, only tens of micrometers. This makes them easy to integrate into optical systems,” explains Wang.

The method currently involves scanning a laser beam across the film, but in future it may be possible to use an optical-pattern generator, which would speed up writing of the film.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering.

Filed Under: Power Electronic Tips

Primary Sidebar

EE Training Center Classrooms

“ee

“ee

“ee

“ee

Featured Resources

  • NEW! EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure

Autonomous & Connected Vehicles 2019


RSS Current EDABoard.com discussions

  • Advantages of not instantiating DPRAM but to realize by registers
  • How to compare Matlab/Theory <=> Cadence: Switched-cap. Integrator: Mag & Phase
  • SI and SE of double stage synchoronizer
  • Can i use pic mcu as switch on dc-dc step up?
  • smps

RSS Current Electro-Tech-Online.com Discussions

  • NE555p circuit help
  • new to Ardunio but trying to compile
  • Primary FET heatsink connected to earth in offline flyback?
  • Accumulator?
  • Creepage distances for offline SMPS

Oscilloscopes Product Finder

Follow EE World on Twitter

Tweets by @EEWorldOnline

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analog IC Tips
  • Connector Tips
  • Engineer's Garage
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips
  • 5G Technology World

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookFollow us on YouTube Add us on Instagram

Copyright © 2021 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy