• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Lighting the Way to Miniature Devices

September 13, 2016 By The Agency for Science, Technology and Research (A*STAR)

Electromagnetic waves created on a layer of organic molecules could provide the perfect on-chip light source for future quantum communication systems.

A team of scientists including researchers at Agency for Science, Technology and Research (A*STAR), Singapore, has captured tiny flashes of light from an ultrathin layer of organic molecules sandwiched between two electrodes that could replace lasers and LEDs as signal sources for future miniature, ultrafast quantum computing and light-based communication systems.

To investigate electromagnetic waves called plasmons, which skim along the interface between two materials, Nikodem Tomczak from the A*STAR Institute of Materials Research and Engineering and colleagues collaborated with Christian A. Nijhuis from the National University of Singapore to construct a junction consisting of a layer of thiol molecules on a metal electrode and liquid gallium-indium alloy as a top electrode.

The team created plasmons by applying a voltage across the thiol layer. Although thiol is an insulator, the layer was thin enough for electrons to quantum tunnel between the electrodes, exciting plasmons on the thiol layer’s surface in the process. The plasmons then decayed into photons, tiny pulses of light that Tomczak and his colleagues were able to detect.

“We were surprised that the light did not come from the whole junction, but instead just from very small spots that blink at different frequencies,” said Tomczak.

The team found that the light generated by the plasmons was polarized, and that both the polarization and the wavelength of the light varied with the voltage applied across the junction and the molecules used to form the organic layer.

“The spots are diffraction-limited, polarized and their blinking follows power-law statistics,” said Tomczak. “We need further experiments to confirm, but it is very similar to emission from other single photon sources, such as quantum dots or nanodiamonds.”

Further evidence that the light is from plasmons decaying into a single photon came from Chu Hong Son and his team at the A*STAR Institute of High Performance Computing who modeled the spots as the product of the smallest possible source, a single dipole emitter, and achieved results consistent with the experimental observations.

You Might Also Like

Filed Under: Displays

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How can I get the frequency please help!
  • Fuel Gauge IC for Primary Cell Monitoring
  • differential amplifier with bjt
  • What is the purpose of the diode from gate to GND in normal Colpitts oscillator Circuits?
  • ADS optimization error

RSS Current Electro-Tech-Online.com Discussions

  • 100uF bypass Caps?
  • Fuel Auto Shutoff
  • Actin group needed for effective PCB software tutorials
  • how to work on pcbs that are thick
  • compatible eth ports for laptop
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy