• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Over to You, Automation

January 26, 2017 By Human Factors and Ergonomics Society

Many recent human factors studies of takeover time in automated vehicles have looked at how long it takes a driver to switch out of automation mode, usually in critical situations. Alexander Eriksson and Neville Stanton at the University of Southampton, focusing on automation takeover time in noncritical situations, took what is likely the first in-depth look at how long it takes drivers to transition from manual to automated driving.

In their Human Factors article “Takeover Time in Highly Automated Vehicles: Noncritical Transitions to and From Manual Control,” the authors observed 26 men and women (ages 20-52) engaged in simulated driving at 70 mph with and without a nondriving secondary (i.e., distracting) task and recorded response time as the drivers took over or relinquished control of the automated system. A takeover request was issued at random intervals ranging from 30 to 45 seconds during normal motorway-driving conditions. The authors found that drivers engaged in a secondary task prior to a control transition took longer to respond, posing a safety hazard.

Eriksson and Stanton also found that under noncritical conditions, drivers needed 1.9 to 25.7 seconds to take over control from the automation. Such a large range reflects a variety of driver behavior and environmental conditions. The challenge for designers then becomes accommodating the full range of response times rather than limiting design parameters to mean or median transition times in the switch to and from automated and manual driving modes.

The authors note that their findings can guide policy makers in setting guidelines for how much lead time a driver will need before taking over from the automation. But they caution that “if normal, noncritical control transitions are designed based on the data obtained in studies utilizing critical situations, there is a risk of unwanted consequences.” For instance, a too-short lead time (e.g., 7 seconds prior to taking control, as found in some studies of critical response time) could prevent drivers from responding optimally, resulting in a stressed transition process whereby drivers may accidentally swerve, making sudden lane changes or braking harshly. Such actions are acceptable in safety-critical scenarios when drivers may have to avoid a crash but could pose a safety hazard for other road users in noncritical situations.

You Might Also Like

Filed Under: Automotive/Transportation

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • SPI speed pic18f66j15
  • Antiparallel Schottky Diodes VDI-Load Pull
  • Elektronik devre
  • Power handling in RF waveguide components
  • 12VAC to 12VDC 5A on 250ft 12AWG

RSS Current Electro-Tech-Online.com Discussions

  • how to work on pcbs that are thick
  • compatible eth ports for laptop
  • Actin group needed for effective PCB software tutorials
  • Kawai KDP 80 Electronic Piano Dead
  • Doing consultancy work and the Tax situation?
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy