• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Tracking new cancer-killing particles with MRI

December 14, 2009 By EurekAlert

HOUSTON — (Dec. 14, 2009) — Researchers at Rice University and Baylor College of Medicine (BCM) have created a single nanoparticle that can be tracked in real time with MRI as it homes in on cancer cells, tags them with a fluorescent dye and kills them with heat. The all-in-one particle is one of the first examples from a growing field called “theranostics” that develops technologies physicians can use to diagnose and treat diseases in a single procedure.

The research is available online in the journal Advanced Functional Materials. Tests so far involve laboratory cell cultures, but the researchers said MRI tracking will be particularly advantageous as they move toward tests in animals and people.

“Some of the most essential questions in nanomedicine today are about biodistribution — where particles go inside the body and how they get there,” said study co-author Naomi Halas. “Noninvasive tests for biodistribution will be enormously useful on the path to FDA approval, and this technique — adding MRI functionality to the particle you’re testing and using for therapy — is a very promising way of doing this.”

Halas, Rice’s Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering, is a pioneer in nanomedicine. The all-in-one particles are based on nanoshells — particles she invented in the 1990s that are currently in human clinical trials for cancer treatment. Nanoshells harvest laser light that would normally pass harmlessly through the body and convert it into tumor-killing heat.

In designing the new particle, Halas partnered with Amit Joshi, assistant professor in BCM’s Division of Molecular Imaging, to modify nanoshells by adding a fluorescent dye that glows when struck by near-infrared (NIR) light. NIR light is invisible and harmless, so NIR imaging could provide doctors with a means of diagnosing diseases without surgery.

In studying ways to attach the dye, Halas’ graduate student, Rizia Bardhan, found that dye molecules emitted 40-50 times more light if a tiny gap was left between them and the surface of the nanoshell. The gap was just a few nanometers wide, but rather than waste the space, Bardhan inserted a layer of iron oxide that would be detectable with MRI. The researchers also attached an antibody that lets the particles bind to the surface of breast and ovarian cancer cells.

In the lab, the team tracked the fluorescent particles and confirmed that they targeted cancer cells and destroyed them with heat. Joshi said the next step will be to destroy whole tumors in live animals. He estimates that testing in humans is at least two years away, but the ultimate goal is a system where a patient gets a shot containing nanoparticles with antibodies that are tailored for the patient’s cancer. Using NIR imaging, MRI or a combination of the two, doctors would observe the particles’ progress through the body, identify areas where tumors exist and then kill them with heat.

“This particle provides four options — two for imaging and two for therapy,” Joshi said. “We envision this as a platform technology that will present practitioners with a choice of options for directed treatment.”

Eventually, Joshi said, he hopes to develop specific versions of the particles that can attack cancer at different stages, particularly early stage cancer, which is difficult to diagnose and treat with current technology. The researchers also expect to use different antibody labels to target specific forms of the disease. Halas said the team has been careful to choose components that are either already approved for medical use or are already in clinical trials.

“What’s nice is that every single component of this has been approved or is on a path toward FDA approval,” Halas said. “We’re putting together components that all have good, proven track records.”

SOURCE

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Core loss in output inductor of 500W Two Transistor forward?
  • Question LCD LED IPS display
  • Colpitts oscillator
  • BiSS-C Behavior Without Slave (dsPIC33AK128MC106 + iC-MB4)
  • GanFet power switch starts burning after 20 sec

RSS Current Electro-Tech-Online.com Discussions

  • Need Help Figuring Out the Schematics Of Circuit Board
  • Wish to buy Battery, Charger and Buck converter for 12V , 2A router
  • applying solder paste from a jar
  • Question i-nears headphones magnetic drivers
  • An Update On Tarrifs
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy