To implement efficient, real-time embedded motor control systems in space-constrained applications, Microchip Technology has launched a family of dsPIC Digital Signal Controller (DSC)-based integrated motor drivers. These devices incorporate a dsPIC33 digital signal controller (DSC), a three-phase MOSFET gate driver, and an optional LIN or CAN FD transceiver into one package. A significant benefit of this integration is a reduction in the component count of the motor control system design, smaller printed circuit board (PCB) dimensions, and reduced complexity. The devices are supported by development boards, reference designs, application notes, and Microchip’s field-oriented control (FOC) software development suite, motorBench Development Suite V2.45.
The integrated motor driver devices can be powered by a single power supply up to 29V (operation) and 40V (transient). An internal 3.3V low dropout (LDO) voltage regulator powers the dsPIC DSC, which eliminates the need for an external LDO to power the device. Operating between 70—100 MHz, the dsPIC DSC-based integrated motor drivers provide high CPU performance and can support efficient deployment of FOC and other advanced motor control algorithms.
To learn more about Microchip’s growing portfolio of integrated motor drivers visit the dsPIC DSC-Based integrated motor drivers webpage.
An extensive ecosystem of motor control software and hardware development tools helps make the design process faster and easier, reducing the customer’s time to market.
The dsPIC33CK Motor Control Starter Kit (MCSK) and the MCLV-48V-300W are two new dsPIC33-based integrated motor driver development boards that provide rapid prototyping solutions with flexible control options. The MCSK includes a dsPIC33CK low-voltage motor control development board, a 24V three-phase BLDC motor, an AC/DC adapter, a USB cable, and other accessories. This cost-effective kit supports fast prototyping of motor control applications that operate between 12 and 48 VDC with up to 10 Amps of continuous current. The MCLV-48V-300W development board enables fast prototyping of three-phase permanent magnet synchronous motors that are rated between 12 and 48 VDC and capable of delivering up to 25A RMS continuous current per phase. This inverter board introduces a new modular concept where a separate dual-in-line module (DIM) is inserted into the board to configure it for a particular dsPIC DSC or MCU.
The motorBench Development Suite is a free GUI-based software development tool for FOC that accurately measures critical motor parameters, automatically tunes feedback control gains, and generates source code by utilizing the motor control application framework (MCAF). The latest version, v2.45, includes a powerful new feature called zero-speed/maximum torque (ZS/MT), which enables designers to eliminate Hall or magnetic sensors while maximizing the torque output from the motor, from start-up, and at low speeds. This feature can be used in pumps, power tools, e-mobility, and many other applications.
MPLAB Discover now contains many dsPIC DSC-based MATLAB Simulink models supporting various motor control algorithms and development boards. Microchip also provides free device blocks for Simulink that can be used to generate optimized code from models for dsPIC DSCs and other Microchip MCUs.
The growing number of dsPIC DSC-based motor control reference designs now includes an automotive cooling fan, a low-voltage ceiling fan, and a drone propeller controller. These reference designs shorten the time to market by providing a production-ready solution for various motor control applications. Typically, the board design files include schematics and a BOM, a board user’s guide, and motor control source code that are available for download.