• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Microwaves and the Havana Syndrome

June 14, 2021 By Lee Teschler

Leland Teschler • Executive editor

The National Academy of Sciences recently released its conclusions about what sickened dozens of American Embassy diplomats in Cuba, a phenomenon dubbed the Havana Syndrome. Though the panel reached no definitive conclusion, it found pulsed RF (a.k.a. directed microwave energy) was the most likely cause. Panel members could not rule out the possibility that the whole episode was a case of mass hysteria but considered the idea unlikely.

The directed microwave energy theory rests on what’s called the microwave auditory effect. When a human head Lee-Teschlerabsorbs a pulse of RF energy, a rise in temperature causes tissue inside the head to expand slightly. The expansion launches a pressure wave that propagates throughout the skull to the inner ear, potentially causing clicking or buzzing sounds. Fortunately, the temperature rise is tiny (microdegrees) and the pressure wave is far too weak to injure tissue unless the microwave power density is huge.

Critics have pooh-poohed the directed energy conclusion, claiming a microwave generator big enough to cause tissue damage would stick out like an NBA center at a jockey convention. Fortunately, there is open research on directed energy effects. So sufficiently interested individuals can do a little research and draw their own conclusions.

One paper in this area published in Frontiers of Neurology points out experimenters were able to kill rats by exposing them to 2.45 GHz microwaves with a field intensity of 1,000 W/cm2. There’s no data in the open literature on the threshold of microwave power that causes human brain damage, but the researchers suggest a minimum intensity of 1 W/cm2 impinging on the human head–using 50-µsec pulses on a 7 kHz repetition rate–might be a good place to start.

It has also been reported that the wife of a member of the Cuban embassy staff once looked outside her home after hearing disturbing sounds and had seen a van speeding away. The implication is that the microwave generator was small enough to fit in the van. Also, the incident provides a means for making a ballpark estimate of range; we might say 150 ft from the street to the woman’s home would be a reasonable guess.

So here’s how the calculation shakes out: We want to know the minimum output power of a 2.45 GHz microwave generator able to produce at least 1 W/cm2 inside a house 150 ft away, through at least one wall. (For simplicity, we’ll assume the van was transparent to EM radiation.) We might also assume the transmitter is teamed with a parabolic antenna. A 6-ft-diameter parabolic antenna, which should fit in a van, can add about 30 dB of gain at 2.45 GHz.

Using these parameters in a back-of-the-envelop calculation will lead you to conclude that the 2.45-GHz transmitter must put out at least 2 MW to get the job done. Today, a 2-MW transmitter in the 2.45-GHz range is about the size of a laundry basket and weighs about 150 lb. So it can certainly fit in a van, along with a power supply and modulation source, while leaving room for a human operator.

If this scenario really did unfold as we theorize, we doubt the frequency used was smack in the middle of the WiFi band as in our example. (Though perhaps that doesn’t matter in Cuba.) But big microwave generators put in place to hassle diplomats seem to be at least theoretically feasible.

Of course, there is one question this exercise doesn’t answer: Given all the controversy over pulsed microwaves, why not just stick spectrum analyzers in the homes and offices of U.S. diplomats? If this simple solution was mentioned in the NAS report, it certainly isn’t getting any press coverage.

You Might Also Like

Filed Under: FAQ, Featured, Test and Measurement Tips

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

zonal architecture

Addressing zonal architecture challenges in the automotive industry

zonal architecture

Addressing zonal architecture challenges in the automotive industry

A2L refrigerants drive thermal drift concerns in HVAC systems

Why outdoor charging demands specialized battery connectors

How Li-ion batteries are powering the shift in off-highway equipment

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Why do fill dummy(logic)on the chip(layout)
  • Why need use TOPmetal Stacking?
  • Monte-Carlo simulation error on ADE-XL
  • Snooping Around is All
  • Identification of a 6 pin smd chip (sto-23-6) marked E2

RSS Current Electro-Tech-Online.com Discussions

  • My Advanced Realistic Humanoid Robots Project
  • Does US electric code allow branching ?
  • Fun with AI and swordfish basic
  • using a RTC in SF basic
  • Faulty heat air gun (dc motor) - problem to locate fault due to Intermittent fault
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy