• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Sensors, sensors everywhere. Now what do I do?

July 9, 2021 By Aimee Kalnoskas

By Moshe Sheier, Vice President of Marketing at CEVA

Mobile computing has driven an explosion in product opportunities – smartphones, wearables, hearables, sports cameras, and more. Sensing will further extend opportunities in applications which must be environment-aware. Now it’s commonplace to think about object recognition and collision warning through visual, radar, or Lidar sensing. Short-range proximity risk through ultrasonic sensors. Motion and pose detection through IMUs. Acoustic-based hazardous sound detection. For many possible applications in transportation, robotics, home automation, smart city, factory, and warehouse management. The list is honestly endless. We have all the raw material we need to build a futuristic, almost science fiction world driven by intelligent sensing. But how?

(Source: CEVA)

From sensing to motion

Think about a robot assistant moving around an airport. Helping a passenger check-in, find their gate, get details on a flight. This robot must move freely about the airport, without bumping into people walking or running in all directions. Or objects which may be stationary or may sometimes move. This assistant should know how to navigate intelligently through a constantly changing environment. And it must be able to understand and respond to natural language voice commands over some range of possibilities. We’ll get to that below.

Optical and proximity sensors are a starting point for autonomous mobility. These feed into a complex algorithm called SLAM, building a point map of the space being traveled and constantly refining that map. This method is increasingly being augmented by dead reckoning in low light conditions where optical is less effective. This tracks movement from a known position, drawing information from wheel motion, accelerometers, and other sensors. Meantime the proximity sensors provide input to avoid crashing into an object or a person. Already we have multiple sensors feeding into algorithms to generate a map and a location for the assistant in the map.

Camera-based SLAM requires heavy-duty linear equation solving with high accuracy, for which vector DSP platforms are well suited. Ultrasonic-based proximity sensing must start with noise reduction to localize the nearest object among echoes and other clutter, followed by range (and direction) computation. This kind of signal processing is ideally suited to a scalar DSP.

From voice to actions

A passenger sees an assistant and calls it over, “Hey, Airbot!” First, the assistant must recognize the command and where it came from. Some sophisticated audio processing goes into this step, especially in a noisy environment like an airport terminal. Recognizing the trigger command is a basic bit of AI you’ll find in any smart speaker. The robot can also detect the direction the voice command came from through beamforming, a kind of audio “zooming”. This is more signal processing, figuring out direction from how a recognized command is detected at slightly different times at multiple microphones.

Our airbot glides over to the passenger, avoiding other obstacles along the way, stops a couple of feet away, and asks, “How can I help you?” It presents a range of questions it knows how to answer on the screen, and the passenger says, “I’d like to check-in”. Our robot first must do some more signal processing to reduce noise in that audio signal, partly by beamforming, partly by echo cancellation. Then it must recognize the command.

Natural language processing (NLP) could be handled in the cloud, but there’s a lot of load on airport networks. Hence NLP must be handled locally for quick response. The robot should respond quickly to provide a satisfactory user experience. It asks the passenger to look directly at its screen, takes a picture, and then asks the passenger to insert a picture-id such as a passport identity page. It can then compare these images for added security, which requires a strong programmable neural net engine.

The remaining steps in check-in? That’s back to traditional embedded processing.

Pulling it all together

Intelligent sensing devices must use a platform which supports handling multiple sensors simultaneously. It should provide strong scalar DSP support for front-end signal processing — vectorized support for image-based computations and SLAM. And neural net support for speech and vision AI, again a vectorized DSP, but with special extensions for neural nets, along with rich software compilers and libraries to provide you all the fundamentals you’d expect in SDKs for each of these domains.

An option that allows to power in such a way sensing platforms is CEVA’s ‘SensPro2’. Building on the company’s already strong background in vision processing, audio, SLAM, and AI, SensPro2 is a highly scalable and enhanced 2nd generation high-performance sensor hub DSP for multitasking sensing and AI of multiple sensors including camera, radar, Lidar, Time-of-Flight, microphones, and inertial measurement units.

 

You may also like:


  • VCSEL meets demands of time of flight applications

  • Automotive LiDAR slides down the cost curve

  • IEDM highlights: A 2D lidar on a chip

  • Optimizing in-vehicle data networks

  • LiDAR and Time of Flight, Part 1: Introduction
DesignFast Banner version: 03e1dd97

Filed Under: Sensor Tips

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

Our second 5G Handbook is now available

Featuring 15 articles, the 2022 5G Handbook looks at private networks, timing, connectivity, latency, mmWaves, test, and other topics.

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Photovoltaic MOSFET Drivers - Voltage Rating
  • UCC28070A controller ramp circuit implemented incorrectly?
  • Timing question on RX code
  • Frequency of FM transmitter not changing
  • Altium Routing: through vias being split into two blind vias. Additional question about blind via costs / benifits

RSS Current Electro-Tech-Online.com Discussions

  • software PWM
  • 200mv pulse to 12v lock
  • Background of Members Here
  • UCC28070A ramp circuit is wrong?
  • Treadmill board component burn repair

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy