• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • Covid-19
    • DesignFast
    • Ebooks / Tech Tips
    • EE Forums
      • EDABoard.com
      • Electro-Tech-Online.com
    • FAQs
    • 2020 LEAP Awards
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars
    • White Papers
  • Videos
    • Teardown Videos
  • Lee’s Teardowns
    • Teardown Videos
  • Learning Center
  • 5G
  • Women in Engineering

Ultra-thin decoupling MLCCs for 4 Vdc-rated automotive apps

December 17, 2020 By Redding Traiger

Murata introduces the ultra-thin LW reversed, low equivalent series inductor (ESL) multilayer ceramic capacitor (MLCC) with a capacitance value of 1.0 µF ±20% for 4 Vdc-rated automotive applications. With a 0204-inch size (0.5 x 1.0 mm) footprint and a maximum thickness of just 0.22 mm, the LLC152D70G105ME01 decoupling capacitor can be implemented on the back of a processor package, contributing to lower impedance of a power supply line. It can also sit close to the main processor on the motherboard.

Compared to standard MLCCs, the LW reverse construction flips the electrodes through 90° so they are positioned on the long side of the rectangular chip. This change in construction reverses the length-to-width ratio, providing effective noise suppression in high-frequency applications.

As advanced driver-assistance systems (ADAS) continue to evolve to increase safety and, ultimately, deliver self-driving vehicles, ICs for in-vehicle equipment have become increasingly high-performance. To stabilize these ICs, more focus is being put on lowering the power supply lines’ impedance. Thanks to Murata’s proprietary thin layer technology for ceramic elements and thin-sheet formation technology, the LLC152D70G105ME01 LW reversed, low ESL chip MLCCs are effective for achieving a low-impedance design.

You may also like:


  • Power converter output filter capacitors – Virtual Roundtable (part 2…

  • X and Y safety capacitor applications – Virtual Roundtable (part…

  • Up close and personal with magnetrons

  • Bringing science to the selection of mica capacitors

  • Visualizing phase relationships in capacitors

Filed Under: Analog IC Tips, Applications, Automotive Tagged With: murata

Primary Sidebar

EE Training Center Classrooms

“ee

“ee

“ee

“ee

Featured Resources

  • NEW! EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure

Autonomous & Connected Vehicles 2019


RSS Current EDABoard.com discussions

  • FM demodulator in a ratio detector
  • Looking where to buy a specific connector used on Roland synth.
  • complex bjt transfer function amplifier
  • What the best way to store data of size ( 90,000 * 32) bit (taken from a text file) using VHDL?
  • SAR tool is not activated on CST?

RSS Current Electro-Tech-Online.com Discussions

  • Repairing Sony car radio MEX-BT3800U
  • How are you managing with the Covid-19 pandemic?
  • Random noise generator calibration
  • zener diode problem
  • Another push button bypass

Oscilloscopes Product Finder

Follow EE World on Twitter

Tweets by @EEWorldOnline

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analog IC Tips
  • Connector Tips
  • Engineer's Garage
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips
  • 5G Technology World

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookFollow us on YouTube Add us on Instagram

Copyright © 2021 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy