• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Next-gen FPGAs and SoC for increased power efficiency

June 10, 2013 By Aimee Kalnoskas Leave a Comment

Generation10Altera Corporation introduced its Generation 10 FPGAs and SoCs, offering system developers breakthrough levels of performance and power efficiencies. Generation 10 devices are optimized based on process technology and architecture to deliver the industry’s highest performance and highest levels of system integration at the lowest power. Initial Generation 10 families include Arria 10 and Stratix 10 FPGAs and SoCs with embedded processors. Generation 10 devices leverage the most advanced process technologies in the industry, including Intel’s 14-nm Tri-Gate process and TSMC’s 20 nm process. Early access customers are currently using the Quartus II software for Generation 10 product development.

Delivering the Unimaginable with Stratix 10 FPGAs and SoCs
Stratix 10 FPGAs and SoCs are designed to enable the most advanced, highest performance applications in the communications, military, broadcast and compute and storage markets, while slashing system power. Leveraging Intel’s 14 nm Tri-Gate process and an enhanced high-performance architecture, Stratix 10 FPGAs and SoCs have an operating frequency over one gigahertz, 2X the core performance of current high-end 28 nm FPGAs. For high-performance systems that have the most strict power budgets, Stratix 10 devices allow customers to achieve up to a 70 percent reduction in power consumption at performance levels equivalent to the previous generation.

Altera is announcing the technology details of Stratix 10 FPGAs and SoCs today as part of the Generation 10 portfolio introduction, and will disclose more details on the product at a later date. Stratix 10 FPGAs and SoCs provide the industry’s highest performance and highest levels of system integration, including:

  • More than four million logic elements (LEs) on a single die
  • 56-Gbps transceivers
  • More than 10-TeraFLOPs single-precision digital signal processing
  • A third-generation ultra-high-performance processor system
  • Multi-die 3D solutions capable of integrating SRAM, DRAM and ASICs

Reinventing the Midrange with Arria 10 FPGAs and SoCs
Arria 10 FPGAs and SoCs are the first device families to roll out as part of the Generation 10 portfolio. The device family sets a new bar for midrange programmable devices, delivering both the performance and capabilities of current high-end FPGAs at the lowest midrange power. Leveraging an enhanced architecture that is optimized for TSMC’s 20 nm process, Arria 10 FPGAs and SoCs deliver higher performance at up to 40 percent lower power compared to the previous device family.

Arria 10 devices offer more features and capabilities than today’s current high-end FPGAs, at 15 percent higher performance. Reflecting the trend toward silicon convergence, Arria 10 FPGAs and SoCs offer the highest degree of system integration available in midrange devices, including 1.15 million LEs, integrated hard intellectual property and a second-generation processor system that features a 1.5 GHz dual-core ARM® Cortex™-A9 processor. Arria 10 FPGAs and SoCs also provide 4X greater bandwidth compared to the current generation, including 28-Gbps transceivers, and 3X higher system performance, including 2666 Mbps DDR4 support and up to 15-Gbps Hybrid Memory Cube support.

Development Suite Delivers Breakthrough Productivity to Generation 10
Generation 10 devices are supported by Altera’s Quartus II development software and tools for higher level design flows that include a software development kit for OpenCL, a SoC Embedded Design Suite and DSP Builder tool. This leading-edge development tool suite enables design teams to maximize productivity while making it easier for new design teams to adopt Generation 10 FPGAs and SoCs in their next-generation systems. The Quartus II software will continue to deliver the industry’s fastest compile times by providing Generation 10 FPGAs and SoCs an 8X improvement in compile times versus the previous generation. The substantial reduction in compile times is the result of leading-edge software algorithms that take advantage of modern multi-core computing technologies.

Altera
www.altera.com

DesignFast Banner version: 03e68ea8

Filed Under: Aerospace & Defense, Applications, FPGA, Telecommunications Tagged With: altera

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

Our second 5G Handbook is now available

Featuring 15 articles, the 2022 5G Handbook looks at private networks, timing, connectivity, latency, mmWaves, test, and other topics.

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • A circuit that can adjust a resistance and probing a voltage node
  • DC to DC buck converter
  • A circuit that can probe 2 currents and adjust the resistor
  • Microsoft Project 2019 dependencies
  • MOSFET ORing circuit simulation (LTspice)

RSS Current Electro-Tech-Online.com Discussions

  • Enclosure sought
  • Need help using a common power supply for two devices
  • Fletcher's Law
  • Setting the 18F24K20 to digital.
  • Multistage BJT amplifier

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy