• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Bluetooth LE SoC highlights power efficiency in beacon mode

July 5, 2016 By Aimee Kalnoskas Leave a Comment

ST Microelectronics has announced the first Bluetooth Low Energy wireless System-on-Chip (SoC). The BlueNRG-1 is optimized to satisfy high-volume opportunities in the fast-growing Bluetooth Low Energy market through the combination of energy efficiency and strong radio performance.

Bluetooth Low Energy technology is ideal for energy-constrained smart sensors and connected devices like wearables, retail beacons, keyless entry systems, smart remote controllers, asset trackers, and industrial and medical monitors. Shipments of IoT products that support Bluetooth Low Energy should increase 34% to 2021 (CAGR), reaching close to 1.4 billion units, according to ABI Research[1], aided by proliferation of Bluetooth-enabled tablets and smartphones that provide a convenient user interface for interacting with Bluetooth Low Energy devices.

Bluetooth Low Energy devices must ensure energy-efficient operation, including extremely low power consumption in sleep and standby modes that are used frequently to maximize battery life. Strong radio performance is also needed to advertise availability and connect reliably. ST has designed its new BlueNRG-1 programmable SoC with performance and power to satisfy these requirements.

The integrated radio transceiver of BlueNRG-1 is extremely power-efficient in the modes frequently used by devices such as beacons when setting up short-duration connections for exchanges like sharing offers with shoppers’ smartphones. BlueNRG-1’s ability to transition quickly between power-saving and active modes extends battery life from months to years. In addition, RF-output power is boosted to +8dBm to ensure clear and reliable communication for optimum efficiency, even in noisy environments.

“The success of many new applications in the Retail, Connected Home, Automotive, Industrial, Medical, or ePayment segments will notably depend on the quality of user experience, which will demand efficient Bluetooth Low Energy solutions,” explained Benedetto Vigna, Executive Vice President, Analog and MEMS Group, STMicroelectronics. “BlueNRG-1 hits the sweet spot for IoT designers: compared to existing solutions it’s a single-chip solution, neither over-specified nor expensive, and enables longer battery life and superior connection reliability with optimum performance.”

In addition to efficient performance and low power consumption, BlueNRG-1 also offers value-added features that make device designers’ lives easier. These include a dedicated digital-microphone input that simplifies voice-enabled applications and 105°C maximum operating temperature suitable for smart-lighting and automotive applications (such as passive-entry-passive-start or onboard-diagnostic devices). Support for the latest Bluetooth Low Energy version 4.2 specification ensures advanced privacy and security.

BlueNRG-1 is scheduled to enter volume production in late July 2016 and will be available in two package styles. Budgetary pricing is $1.50 for BlueNRG-132 in 5mm x 5mm QFN-32 package, and $1.45 for BlueNRG-134 in 2.7mm x 2.6mm WLCSP-34 for space-constrained applications.

The BlueNRG-1 single-core SoC features the 32MHz 32-bit ARM Cortex-M0 and delivers ample performance per milliwatt. 160KByte of on-chip Flash memory provides application-code and data storage besides the possibility to upgrade the ST Bluetooth Low Energy firmware stack. ST has also blended proven ultra-low-power design, including support for fast wake-up and sleep transitions, and sub-1µA standby current.

BlueNRG-1 comes with ST’s market-proven Bluetooth Low Energy stack in the form of a ready-to-use linkable library. Library linking at build-time removes unused parts of the stack so as to ensure efficient memory utilization. Pre-certified profiles for medical devices, proximity monitor and other devices are provided, as well as tools and collaterals that support app development for iOS® or Android™ devices.

Important peripherals that help simplify design and reduce component count include a 10-bit Analog/Digital Converter (ADC), SPI and I2C master/slave units, UART, and up to 15 user-configurable I/Os depending on package type.

BlueNRG-1 can be connected directly to ST’s popular single-chip balun for converting between the balanced transceiver signal and the single-ended antenna signal.  Available as a space-efficient QFN device, the balun integrates a network of nine passive components on a single die using ST’s IPD-on-glass technology to deliver space savings, simplify design, accelerate time to market, and enhance radio performance.

Designers using BlueNRG-1 have access to a comprehensive development ecosystem, including a software development kit (SDK) with APIs, sensor drivers, sample applications and more. Recognizing the importance of power consumption in Bluetooth Low Energy applications, there is also a current-estimation tool that helps assess the effects of changing factors such as transmit output power, master/slave sleep clock accuracy, RAM retention, connection advertising or scanning interval, data length, and DC-DC converter activation.

You Might Also Like

Filed Under: Applications, Consumer, Industrial, Low Power, Medical Tagged With: ST, STMicroelectronics

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Input impedance matching network
  • Question LCD LED IPS display
  • 12VAC to 12VDC 5A on 250ft 12AWG
  • Power switches to replace Mechanical Relay in the HV pulse tester setup
  • i need an embedded c program that will read a 12 bit memory address from the io pins and output the data to pins from the memory in a 8051 mcontroller

RSS Current Electro-Tech-Online.com Discussions

  • Fuel Auto Shutoff
  • can a AT89C51 be used as a rom?
  • Telegram Based Alarm - Sensor cable protection
  • Chinese Tarrifs – 104%!?!
  • An Update On Tarrifs
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy